Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496461

ABSTRACT

Therapeutic use of electroconvulsive shock (ECS) is 75% effective for the remission of treatment-resistant depression. Like other more common forms of antidepressant treatment such as fluoxetine, ECS has been shown to increase neurogenesis in the hippocampal dentate gyrus of rodent models. Yet the question of how ECS-induced neurogenesis supports improvement of depressive symptoms remains unknown. Here, we show that ECS-induced neurogenesis is necessary to improve depressive-like behavior of mice exposed to chronic corticosterone (Cort). We then use slice electrophysiology to show that optogenetic stimulation of adult-born neurons produces a greater hyperpolarization in mature granule neurons after ECS vs Sham treatment. We identify that this hyperpolarization requires the activation of metabotropic glutamate receptor 2 (mGluR2). Consistent with this finding, we observe reduced expression of the immediate early gene cFos in the granule cell layer of ECS vs Sham subjects. We then show that mGluR2 knockdown specifically in ventral granule neurons blunts the antidepressant-like behavioral effects of ECS. Using single nucleus RNA sequencing, we reveal major transcriptomic shifts in granule neurons after treatment with ECS+Cort or fluoxetine+Cort vs Cort alone. We identify a population of immature cells which has greater representation in both ECS+Cort and fluoxetine+Cort treated samples vs Cort alone. We also find global differences in ECS-vs fluoxetine-induced transcriptomic shifts. Together, these findings highlight a critical role for immature granule cells and mGluR2 signaling in the antidepressant action of ECS.

2.
Dev Dyn ; 252(4): 483-494, 2023 04.
Article in English | MEDLINE | ID: mdl-36495293

ABSTRACT

BACKGROUND: Frem1 has been linked to human face shape variation, dysmorphology, and malformation, but little is known about its regulation and biological role in facial development. RESULTS: During midfacial morphogenesis in mice, we observed Frem1 expression in the embryonic growth centers that form the median upper lip, nose, and palate. Expansive spatial gradients of Frem1 expression in the cranial neural crest cell (cNCC) mesenchyme of these tissues suggested transcriptional regulation by a secreted morphogen. Accordingly, Frem1 expression paralleled that of the conserved Sonic Hedgehog (Shh) target gene Gli1 in the cNCC mesenchyme. Suggesting direct transcriptional regulation by Shh signaling, we found that Frem1 expression is induced by SHH ligand stimulation or downstream pathway activation in cNCCs and observed GLI transcription factor binding at the Frem1 transcriptional start site during midfacial morphogenesis. Finally, we found that FREM1 is sufficient to induce cNCC proliferation in a concentration-dependent manner and that Shh pathway antagonism reduces Frem1 expression during pathogenesis of midfacial hypoplasia. CONCLUSIONS: By demonstrating that the Shh signaling pathway regulates Frem1 expression in cNCCs, these findings provide novel insight into the mechanisms underlying variation in midfacial morphogenesis.


Subject(s)
Hedgehog Proteins , Neural Crest , Mice , Animals , Humans , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Morphogenesis/genetics , Signal Transduction/physiology , Mesoderm/metabolism , Extracellular Matrix Proteins/metabolism
3.
Front Cell Dev Biol ; 8: 590539, 2020.
Article in English | MEDLINE | ID: mdl-33117819

ABSTRACT

Sonic hedgehog (Shh) pathway disruption causes craniofacial malformations including orofacial clefts (OFCs) of the lip and palate. In normal craniofacial morphogenesis, Shh signals to multipotent cranial neural crest cells (cNCCs) and was recently discovered to regulate the angiogenic transcriptome, including expression markers of perivascular cells and pericytes. The mural cells of microvasculature, pericytes in the brain and face differentiate from cNCCs, but their role in facial development is not known. Here, we examined microvascular morphogenesis in a mouse model of Shh pathway antagonist-induced cleft lip and the impact of cNCC-specific Shh pathway activation in a cNCC-endothelial cell co-culture system. During cleft pathogenesis in vivo, disrupted microvascular morphogenesis localized with attenuated tissue outgrowth in the medial nasal processes that form the upper lip. In vitro, we found that human umbilical vein endothelial cell (HUVEC) cord formation was not affected by direct Shh pathway perturbation. However, in a co-culture system in which cNCCs directly interact with endothelial cells, cNCC-autonomous Shh pathway activity significantly prolonged endothelial cord network stability. Taken together, these findings support the premise that Shh pathway activation in cNCCs promotes pericyte-like function and microvascular stability. In addition to suggesting a previously unrecognized role for Shh signaling in facial development, these studies also identify perivascular differentiation and microvascular morphogenesis as new focuses for understanding normal and abnormal craniofacial development.

4.
BMC Genomics ; 19(1): 497, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945554

ABSTRACT

BACKGROUND: The evolutionarily conserved Sonic Hedgehog (Shh) signaling pathway is essential for embryogenesis and orofacial development. SHH ligand secreted from the surface ectoderm activates pathway activity in the underlying cranial neural crest cell (cNCC)-derived mesenchyme of the developing upper lip and palate. Disruption of Shh signaling causes orofacial clefts, but the biological action of Shh signaling and the full set of Shh target genes that mediate normal and abnormal orofacial morphogenesis have not been described. RESULTS: Using comparative transcriptional profiling, we have defined the Shh-regulated genes of the cNCC-derived mesenchyme. Enrichment analysis demonstrated that in cultured cNCCs, Shh-regulated genes are involved in smooth muscle and chondrocyte differentiation, as well as regulation of the Forkhead family of transcription factors, G1/S cell cycle transition, and angiogenesis. Next, this gene set from Shh-activated cNCCs in vitro was compared to the set of genes dysregulated in the facial primordia in vivo during the initial pathogenesis of Shh pathway inhibitor-induced orofacial clefting. Functional gene annotation enrichment analysis of the 112 Shh-regulated genes with concordant expression changes linked Shh signaling to interdependent and unique biological processes including mesenchyme development, cell adhesion, cell proliferation, cell migration, angiogenesis, perivascular cell markers, and orofacial clefting. CONCLUSIONS: We defined the Shh-regulated transcriptome of the cNCC-derived mesenchyme by comparing the expression signatures of Shh-activated cNCCs in vitro to primordial midfacial tissues exposed to the Shh pathway inhibitor in vivo. In addition to improving our understanding of cNCC biology by determining the identity and possible roles of cNCC-specific Shh target genes, this study presents novel candidate genes whose examination in the context of human orofacial clefting etiology is warranted.


Subject(s)
Hedgehog Proteins/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Transcriptome/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hedgehog Proteins/genetics , Humans , Signal Transduction/genetics , Signal Transduction/physiology
5.
Cell Signal ; 44: 1-9, 2018 04.
Article in English | MEDLINE | ID: mdl-29284139

ABSTRACT

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.


Subject(s)
Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Forkhead Transcription Factors/metabolism , Hedgehog Proteins/metabolism , Neural Crest/growth & development , Animals , Cell Proliferation , Cells, Cultured , Down-Regulation , Gene Expression Regulation , Mice , Primary Cell Culture , Signal Transduction
6.
Development ; 144(11): 2082-2091, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28506991

ABSTRACT

Cleft lip is one of the most common human birth defects, yet our understanding of the mechanisms that regulate lip morphogenesis is limited. Here, we show in mice that sonic hedgehog (Shh)-induced proliferation of cranial neural crest cell (cNCC) mesenchyme is required for upper lip closure. Gene expression profiling revealed a subset of Forkhead box (Fox) genes that are regulated by Shh signaling during lip morphogenesis. During cleft pathogenesis, reduced proliferation in the medial nasal process mesenchyme paralleled the domain of reduced Foxf2 and Gli1 expression. SHH ligand induction of Foxf2 expression was dependent upon Shh pathway effectors in cNCCs, while a functional GLI-binding site was identified downstream of Foxf2 Consistent with the cellular mechanism demonstrated for cleft lip pathogenesis, we found that either SHH ligand addition or FOXF2 overexpression is sufficient to induce cNCC proliferation. Finally, analysis of a large multi-ethnic human population with cleft lip identified clusters of single-nucleotide polymorphisms in FOXF2 These data suggest that direct targeting of Foxf2 by Shh signaling drives cNCC mesenchyme proliferation during upper lip morphogenesis, and that disruption of this sequence results in cleft lip.


Subject(s)
Cleft Lip/genetics , Forkhead Transcription Factors/genetics , Hedgehog Proteins/metabolism , Mesoderm/pathology , Morphogenesis/genetics , Neural Crest/pathology , Skull/pathology , Animals , Binding Sites , Cell Proliferation , Cleft Lip/pathology , Down-Regulation/genetics , Ethnicity/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Genetic Association Studies , Genetic Loci , Humans , Lip/embryology , Lip/metabolism , Mesoderm/metabolism , Mice, Inbred C57BL , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL