Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 346: 226-239, 2022 06.
Article in English | MEDLINE | ID: mdl-35461969

ABSTRACT

"Foreignization" of tumor cells via delivery of a non-self foreign antigen (Ag) into tumors is an appealing strategy to initiate anti-tumor immunity that can facilitate tumor rejection by pre-existing foreign-Ag-reactive T cells. However, the immune-suppressive factors in the tumor microenvironment (TME) limit the durable and potent immune response of these cells against tumor antigens, stressing the need for improved tumor-foreignization strategies. Here, we demonstrate that blockade of programmed cell death ligand 1 (PD-L1) on both tumor cells and dendritic cells (DCs) can markedly potentiate the induction of tumor-reactive T cells, thereby strengthening the anti-tumor immunity ignited by tumor-foreignization. Specifically, we developed a polymeric nanoconjugate (PEG-HA-OVA/PPLs), consisting of siPD-L1-based polyplexes, PEGylated hyaluronic acid as the CD44-targeting moiety, and ovalbumin (OVA) as a model foreign antigen. Notably, PEG-HA-OVA/PPLs were simultaneously delivered into CD44high tumor cells and CD44high DCs, leading to efficient cross-presentation of OVA and downregulation of PD-L1 in both cell types. Importantly, the nanoconjugate not only allowed OVA-specific T cells to vigorously reject the foreignized tumor cells but also reprogrammed the TME to elicit robust T-cell responses specific to the endogenous tumor Ags, eventually generating long-lasting protective immunity. Thus, our combination strategy represents an innovative approach for the induction of potent tumor immunity via a two-step consecutive immune boost against exogenous and endogenous tumor Ags.


Subject(s)
Hyaluronic Acid , Neoplasms , Animals , Antigens, Neoplasm , B7-H1 Antigen , Immunotherapy , Mice , Mice, Inbred C57BL , Nanoconjugates , Neoplasms/pathology , Ovalbumin , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL