Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 872: 162254, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36801318

ABSTRACT

Nanoplastics (NPs) discharged from wastewater could pose a major threat to organisms in aquatic environments. Effective removal of NPs by the current conventional coagulation-sedimentation process is not yet satisfactory. This study aimed to investigate the destabilization mechanism of polystyrene NPs (PS-NPs) with different surface properties and sizes (i.e., 90 nm, 200 nm, and 500 nm) by Fe electrocoagulation (EC). Two types of PS-NPs were prepared by a nanoprecipitation method using sodium dodecyl sulfate and cetrimonium bromide solutions to produce negatively-charged SDS-NPs and positively-charged CTAB-NPs. For both NPs, obvious floc aggregation from 7 µm to 14 µm was observed only at pH 7 with particulate Fe accounted for >90 %. At pH 7, Fe EC removed 85.3 %, 82.8 %, and 74.7 % of the negatively-charged SDS-NPs at small-, mid-, and large-sizes from 90 nm, 200 nm, to 500 nm, respectively. Small-size SDS-NPs(90 nm) were destabilized through physical adsorption on the surface of Fe flocs, while the main removal mechanism of mid- and large-SDS-NPs(200 nm and 500 nm) involved the enmeshment of large Fe flocs. Compared to SDS-NPs(200 nm and 500 nm), Fe EC performed similar destabilization behavior to two CTAB-NPs(200 nm and 500 nm), but it resulted in much lower removal rates of 54.8 % - 77.9 %. The Fe EC also exhibited no removal (<1 %) ability toward the small-size and positively-charged CTAB-NPs(90 nm) due to insufficient formation of effective Fe flocs. Our results provide insight into the destabilization of PS in nano-scale with different sizes and surface properties, which clarifies the behavior of complex NPs in a Fe EC-system.

2.
Int J Biol Macromol ; 173: 211-218, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33482215

ABSTRACT

Fluoroquinolone antibiotics are widely used in human and veterinary medicine. However, untreated fluoroquinolone seriously threatens the ecosystem and human health. In this study, deep eutectic solvents (DESs) were applied for the hydrolysis of waste feathers, and the keratin particles (KPs) in a low-cost teabag were utilized to adsorb fluoroquinolone norfloxacin. Results showed that choline chloride/ethylene glycol DES rapidly hydrolyzed feathers within 10 min, and the undissolved particles effectively adsorbed norfloxacin. Adding KOH markedly shortened the hydrolysis time (6 min) and increased the adsorption ability of KPs. The optimum hydrolysis conditions were DES ratio of 1 g: 4.67 g, KOH of 35.68 g L-1, and temperature of 90 °C. When KPDES+KOH of 2 g L-1, norfloxacin of 25 mg L-1, and pH0 7 were used, 94% of norfloxacin was removed in 60 min. A low-cost teabag effectively separated the KPs from the solution after adsorption and did not decrease the adsorption ability of the KPs. The Langmuir isotherm model well described the adsorption behavior of KPsDES+KOH (qmax = 79.36 mg g-1, R2 = 0.9972). In addition, acetone efficiently regenerated the exhausted KPsDES+KOH. The KPs maintained >80% of its adsorption ability after seven cycles of regeneration.


Subject(s)
Anti-Bacterial Agents/chemistry , Feathers/chemistry , Fluoroquinolones/chemistry , Keratins/chemistry , Solvents/chemistry , Adsorption , Animals , Choline/chemistry , Ethylene Glycol/chemistry , Hydrolysis , Industrial Waste/analysis , Molecular Structure , Norfloxacin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...