Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 39(5): 580-594, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38477783

ABSTRACT

Healthy alveolar bone is the cornerstone of oral function and oral treatment. Alveolar bone is highly dynamic during the entire lifespan and is affected by both systemic and local factors. Importantly, alveolar bone is subjected to unique occlusal force in daily life, and mechanical force is a powerful trigger of bone remodeling, but the effect of occlusal force in maintaining alveolar bone mass remains ambiguous. In this study, the Piezo1 channel is identified as an occlusal force sensor. Activation of Piezo1 rescues alveolar bone loss caused by a loss of occlusal force. Moreover, we identify Piezo1 as the mediator of occlusal force in osteoblasts, maintaining alveolar bone homeostasis by directly promoting osteogenesis and by sequentially regulating catabolic metabolism through Fas ligand (FasL)-induced osteoclastic apoptosis. Interestingly, Piezo1 activation also exhibits remarkable efficacy in the treatment of alveolar bone osteoporosis caused by estrogen deficiency, which is highly prevalent among middle-aged and elderly women. Promisingly, Piezo1 may serve not only as a treatment target for occlusal force loss-induced alveolar bone loss but also as a potential target for metabolic bone loss, especially in older patients.


Daily occlusal force and estrogen synergistically maintain alveolar bone homeostasis. PIEZO1 in osteoblasts plays a critical role in sensing occlusal force and maintaining bone mass. PIEZO1 may promote osteoclastic apoptosis through osteoblast-secreted FasL through a PIEZO1-STAT3/ESR1-FasL pathway. Restoration of occlusal force with dental therapies as early as possible to prevent alveolar bone loss is the major priority in oral health care. PIEZO1 may serve as a potential target for bone metabolism disorders.


Subject(s)
Homeostasis , Ion Channels , Animals , Female , Ion Channels/metabolism , Mice , Bite Force , Osteogenesis , Humans , Osteoblasts/metabolism , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Apoptosis , Osteoclasts/metabolism
2.
J Biol Chem ; 294(42): 15395-15407, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31462535

ABSTRACT

The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a central role in cell survival and function. STAT3 has been demonstrated to participate in the maintenance of bone homeostasis in osteoblasts, but its role in osteoclasts in vivo remains poorly defined. Here, we generated a conditional knockout mouse model in which Stat3 was deleted in osteoclasts using a cathepsin K-Cre (Ctsk-Cre) driver. We observed that osteoclast-specific Stat3 deficiency caused increased bone mass in mice, which we attributed to impaired bone catabolism by osteoclasts. Stat3-deficient bone marrow macrophages (BMMs) showed decreased expression of nuclear factor of activated T cells, cytoplasm 1 (NFATc1), and reduced osteoclast differentiation determined by decreases in osteoclast number, tartrate-resistant acid phosphatase activity, and expression of osteoclast marker genes. Enforced expression of NFATc1 in Stat3-deficient BMMs rescued the impaired osteoclast differentiation. Mechanistically, we revealed that STAT3 could drive the transcription of NFATc1 by binding to its promoter. Furthermore, preventing STAT3 activation by using an inhibitor of upstream phosphorylases, AG490, also impaired osteoclast differentiation and formation in a similar way as gene deletion of Stat3 In summary, our data provide the first evidence that STAT3 is significant in osteoclast differentiation and bone homeostasis in vivo, and it may be identified as a potential pharmacological target for the treatment of bone metabolic diseases through regulation of osteoclast activity.


Subject(s)
Bone and Bones/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteogenesis , STAT3 Transcription Factor/metabolism , Animals , Female , Gene Expression Regulation , Homeostasis , Humans , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Osteoclasts/cytology , STAT3 Transcription Factor/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL