Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563259

ABSTRACT

Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.


Subject(s)
Cell- and Tissue-Based Therapy , Dermatitis, Atopic , Extracellular Vesicles , Inflammation , Mesenchymal Stem Cells , Pruritus , Adipose Tissue/metabolism , Animals , Cell- and Tissue-Based Therapy/methods , Cytokines/metabolism , Dermatitis, Atopic/therapy , Dogs , Extracellular Vesicles/metabolism , Inflammation/metabolism , Inflammation/therapy , Janus Kinases/antagonists & inhibitors , Janus Kinases/therapeutic use , Mesenchymal Stem Cells/metabolism , Mice , Pruritus/metabolism , Pruritus/therapy , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/therapeutic use , Signal Transduction , Skin/metabolism
2.
Biomolecules ; 11(3)2021 03 16.
Article in English | MEDLINE | ID: mdl-33809755

ABSTRACT

Despite advances in assisted reproductive technology, treatment for deficient endometrial receptivity is a major clinical unmet need. In our previous study, the water extract of Paeonia lactiflora Pall. enhanced endometrial receptivity in vitro and in vivo via induction of leukemia inhibitory factor (LIF), an interleukin (IL)-6 family cytokine. In the present study, we found that paeoniflorin, a monoterpene glycoside, is the major active compound of P. lactiflora. Paeoniflorin significantly improved the embryo implantation rate in a murine model of mifepristone (RU486)-induced implantation failure. In addition, paeoniflorin increased the adhesion of human trophectoderm-derived JAr cells to endometrial Ishikawa cells through the expression of LIF in vitro. Moreover, using the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database of the human endometrium, we confirmed that LIF signaling is a key regulator for improving human endometrial receptivity. Therefore, these results suggest that paeoniflorin might be a potent drug candidate for the treatment of endometrial implantation failure by enhancing endometrial receptivity.


Subject(s)
Endometrium/drug effects , Glucosides/pharmacology , Leukemia Inhibitory Factor/metabolism , Monoterpenes/pharmacology , Animals , Biological Availability , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line , Computer Simulation , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Glucosides/chemistry , Humans , Male , Mice, Inbred C57BL , Mifepristone/pharmacology , Models, Animal , Monoterpenes/chemistry , Trophoblasts/drug effects
3.
Exp Ther Med ; 21(4): 357, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33732330

ABSTRACT

Endometriosis is a common gynecological disease defined as the growth of endometrial tissues outside the uterus. Although the mechanism underlying the progression of endometriosis has not been fully elucidated, cancer-like aerobic glycolysis is considered to mediate the elevated growth and resistance to apoptosis of endometriotic cells. The heartwood of Caesalpinia sappan L. (family Leguminosae) is a herbal medicinal product used to treat gynecological symptoms, including algomenorrhea and amenorrhea. The results of the present study revealed that endometriotic 12Z cells exhibited more rapid growth than normal endometrial cells (THES). The expression levels of pyruvate dehydrogenase kinase (PDK)1 and 3 and lactate production were higher in 12Z cells than in THES cells. In addition, the 12Z cells were more sensitive to the cytotoxicity of the aqueous extract of C. sappan heartwood (CS) than the THES cells. CS inhibited lactate production and phosphorylation of pyruvate dehydrogenase A by reducing the expression of PDK1. CS also increased mitochondrial reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential and consequently stimulated the apoptosis of 12Z cells. CS-induced cell death was substantially inhibited by exogenous PDK1 expression. In conclusion, CS may be a novel drug candidate for treating endometriosis by inhibiting aerobic glycolysis and inducing ROS-mitochondria-mediated apoptotic cell death.

4.
Molecules ; 26(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546205

ABSTRACT

Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Oils/pharmacology , Tenebrio/chemistry , Wound Healing/drug effects , Wounds and Injuries , Animals , Endothelial Cells/pathology , Fibroblasts/pathology , Male , Mice , NIH 3T3 Cells , Oils/chemistry , Rats , Rats, Sprague-Dawley , Wounds and Injuries/drug therapy , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
5.
Sci Rep ; 10(1): 21940, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318678

ABSTRACT

Most cancer cells primarily produce their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen. Pyruvate dehydrogenase kinase (PDK) 1, an enzyme responsible for aerobic glycolysis via phosphorylating and inactivating pyruvate dehydrogenase (PDH) complex, is commonly overexpressed in tumors and recognized as a therapeutic target in colorectal cancer. Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata Bunge (Compositae). Here, we report that HsA is a PDK1 inhibitor can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro. Computational simulation and biochemical assays showed that HsA directly binds to the lipoamide-binding site of PDK1, and subsequently inhibits the interaction of PDK1 with the E2 subunit of PDH complex. As a result of PDK1 inhibition, lactate production was decreased, but oxygen consumption was increased. Mitochondrial ROS levels and mitochondrial damage were also increased. Consistent with these observations, the apoptosis of colorectal cancer cells was promoted by HsA with enhanced activation of caspase-3 and -9. These results suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.


Subject(s)
Colorectal Neoplasms/enzymology , Enzyme Inhibitors , Lactones , Neoplasm Proteins , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Sesquiterpenes , Binding Sites , Cell Line, Tumor , Colorectal Neoplasms/pathology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Lactones/chemistry , Lactones/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/chemistry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
6.
Biomedicines ; 8(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993179

ABSTRACT

Ambient temperature can regulate the immune response and affect tumor growth. Although thermoneutral caging reduces tumor growth via immune activation, little attention has been paid to the tumorigenic effect of low temperature. In the present study, tumor growth was higher at low ambient temperature (4 °C for 8 h/d) than at the standard housing temperature (22 °C) in allograft models. Low temperature-stimulated tumor growth in mice was reduced by monocyte depletion using clodronate liposomes. Proliferation was considerably greater in cancer cells treated with 33 °C-cultured RAW264.7 cell-conditioned media (33CM) than in cells treated with 37 °C-cultured RAW264.7 cell-conditioned media (37CM). Additionally, glutamine levels were markedly higher in 33CM-treated cells than in 37CM-treated cells. We further confirmed that the addition of glutamine into 37CM enhanced its effects on cancer cell proliferation and glutamine uptake inhibition ameliorated the accelerated proliferation induced by 33CM. Consistently, the inhibition of glutamine uptake in the allograft model exposed to low temperature, effectively reduced tumor volume and weight. Collectively, these data suggest that the secretion and utilization of glutamine by macrophages and cancer cells, respectively, are key regulators of low temperature-enhanced cancer progression in the tumor microenvironment.

7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825675

ABSTRACT

In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Quinones/pharmacology , Sesquiterpenes/pharmacology , A549 Cells , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Carcinoma, Lewis Lung , Cell Line, Tumor , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Porifera/chemistry , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/chemistry , Reactive Oxygen Species/metabolism
8.
Glycoconj J ; 37(2): 187-200, 2020 04.
Article in English | MEDLINE | ID: mdl-31900723

ABSTRACT

3'-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal-regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.


Subject(s)
Apoptosis , Endocytosis , Megakaryocytes/metabolism , Membrane Microdomains/metabolism , Oligosaccharides/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Cell Differentiation , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Megakaryocytes/cytology , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proteolysis , Suppressor of Cytokine Signaling 3 Protein/metabolism
9.
Article in English | MEDLINE | ID: mdl-31827559

ABSTRACT

Improvement of endometrial receptivity is necessary for successful embryo implantation, and its impairment is associated with female infertility. In this study, we investigated the effect of the roots of Cnidium officinale Makino (CoM) on endometrial receptivity in both in vitro and in vivo model of embryo implantation. We found that CoM enhanced the adhesion of JAr cells to Ishikawa cells by stimulating expression of leukemia inhibitory factor (LIF) and integrins. In addition, blocking of LIFR using hLA or neutralization of integrins αV, ß3, and ß5 using antibodies significantly reduced the enhanced adhesion between JAr cell and CoM-treated Ishikawa cells, indicating that LIF and integrin play an important role in trophoblast-endometrium adhesion for embryo implantation. Furthermore, we identified that CoM significantly improved the implantation rate of blastocysts in the mouse model of RU-induced implantation failure. By collecting these results, here, we suggest that CoM has a therapeutic potential against female infertility associated with decreased endometrial receptivity.

10.
Exp Mol Med ; 51(10): 1-13, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604908

ABSTRACT

Angiogenesis should be precisely regulated because disordered neovascularization is involved in the aggravation of multiple diseases. The vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2) axis is crucial for controlling angiogenic responses in vascular endothelial cells (ECs). Therefore, inactivating VEGFR-2 signaling may effectively suppress aberrant angiogenesis and alleviate related symptoms. In this study, we performed virtual screening, identified the synthetic disaccharide 6'-sialylgalactose (6SG) as a potent VEGFR-2-binding compound and verified its high binding affinity by Biacore assay. 6SG effectively suppressed VEGF-A-induced VEGFR-2 phosphorylation and subsequent in vitro angiogenesis in HUVECs without inducing cytotoxicity. 6SG also inhibited VEGF-A-induced extracellular-regulated kinase (ERK)/Akt activation and actin stress fiber formation in HUVECs. We demonstrated that 6SG inhibited retinal angiogenesis in a mouse model of retinopathy of prematurity and tumor angiogenesis in a xenograft mouse model. Our results suggest a potential therapeutic benefit of 6SG in inhibiting angiogenesis in proangiogenic diseases, such as retinopathy and cancer.


Subject(s)
Galactose/metabolism , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis Inhibitors/metabolism , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Galactose/analogs & derivatives , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , MAP Kinase Signaling System/genetics , Mice , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Phosphorylation/genetics , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/pathology , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors
11.
Nutrients ; 11(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547405

ABSTRACT

BACKGROUND: 6'-Sialyllactose (6SL) displays a wide range of the bioactive benefits, such as anti-proliferative and anti-angiogenic activities. However, the therapeutic effects of 6SL on benign prostatic hyperplasia (BPH) remain unknown. METHODS: Six-week-old male Wistar rats (n = 40) were used for in vivo experiments. All rats were castrated and experimental BPH was induced in castrated rats by intramuscular injection of testosterone, with the exception of those in the control group. Rats with BPH were administrated finasteride and 0.5 or 1.0 mg/kg 6SL. Furthermore, the inhibitory effects of 6SL on human epithelial BPH cell line (BPH-1) cells were determined in vitro. RESULTS: Rats with BPH exhibited outstanding BPH manifestations, including prostate enlargement, histological alterations, and increased prostate-specific antigen (PSA) levels. Compared to those in the BPH group, rats in the 6SL group showed fewer pathological changes and normal androgen events, followed by restoration of retinoblastoma protein (pRb) and cell cycle-related proteins. In BPH-1 cells, treatment with 6SL significantly suppressed the effects on the androgen receptor (AR), PSA, and E2F transcription factor 1 (E2F1)-dependent cell cycle protein expression. CONCLUSIONS: 6SL demonstrated anti-proliferative effects in a testosterone-induced BPH rat model and on BPH-1 cells by regulating the pRB/E2F1-AR pathway. According to our results, we suggest that 6SL may be considered a potential agent for the treatment of BPH.


Subject(s)
E2F1 Transcription Factor/metabolism , Lactose/analogs & derivatives , Prostatic Hyperplasia/drug therapy , Receptors, Androgen/metabolism , Retinoblastoma Protein/metabolism , Signal Transduction/drug effects , Animals , Lactose/pharmacology , Male , Prostatic Hyperplasia/chemically induced , Rats , Rats, Wistar , Testosterone
12.
BMB Rep ; 52(9): 560-565, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31383249

ABSTRACT

Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)- induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs. [BMB Reports 2019; 52(9): 560-565].


Subject(s)
Dihydrotestosterone/toxicity , Lactose/analogs & derivatives , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Sialic Acids/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Animals , Computational Biology , Culture Media, Conditioned , Human Umbilical Vein Endothelial Cells , Humans , Lactose/therapeutic use , Male , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/drug therapy , Rats
13.
Cancers (Basel) ; 11(7)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324019

ABSTRACT

Lactate dehydrogenase A (LDHA) is an important enzyme responsible for cancer growth and energy metabolism in various cancers via the aerobic glycolytic pathway. Here, we report that machilin A (MA), which acts as a competitive inhibitor by blocking the nicotinamide adenine dinucleotide (NAD) binding site of LDHA, suppresses growth of cancer cells and lactate production in various cancer cell types, including colon, breast, lung, and liver cancers. Furthermore, MA markedly decreased LDHA activity, lactate production, and intracellular adenosine triphosphate (ATP) levels induced by hypoxia-induced LDHA expression in cancer cells, and significantly inhibited colony formation, leading to reduced cancer cell survival. In mouse models inoculated with murine Lewis lung carcinoma, MA significantly suppressed tumor growth as observed by a reduction of tumor volume and weight; resulting from the inhibition of LDHA activity. Subsequently, the suppression of tumor-derived lactic acid in MA-treated cancer cells resulted in decrease of neovascularization through the regulation of alternatively activated macrophages (M2) polarization in macrophages. Taken together, we suggest that the reduction of lactate by MA in cancer cells directly results in a suppression of cancer cell growth. Furthermore, macrophage polarization and activation of endothelial cells for angiogenesis were indirectly regulated preventing lactate production in MA-treated cancer cells.

14.
Cancers (Basel) ; 11(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126094

ABSTRACT

Aerobic glycolysis is one of the important metabolic characteristics of many malignant tumors. Pyruvate dehydrogenase kinase (PDHK) plays a key role in aerobic glycolysis by phosphorylating the E1α subunit of pyruvate dehydrogenase (PDH). Hence, PDHK has been recognized as a molecular target for cancer treatment. Here, we report that huzhangoside A (Hu.A), a triterpenoid glycoside compound isolated from several plants of the Anemone genus, acts as a novel PDHK inhibitor. Hu.A was found to decrease the cell viability of human breast cancer MDA-MB-231, hepatocellular carcinoma Hep3B, colon cancer HT-29, DLD-1, and murine lewis lung carcinoma LLC cell lines. The activity of PDHK1 was decreased by Hu.A in both in vitro assays and in vivo assays in DLD-1 cells. Hu.A significantly increased the oxygen consumption and decreased the secretory lactate levels in DLD-1 cells. In addition, Hu.A interacted with the ATP-binding pocket of PDHK1 without affecting the interaction of PDHK1 and pyruvate dehydrogenase complex (PDC) subunits. Furthermore, Hu.A significantly induced mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in DLD-1 cells. Consistently, when Hu.A was intraperitoneally injected into LLC allograft mice, the tumor growth was significantly decreased. In conclusion, Hu.A suppressed the growth of tumors in both in vitro and in vivo models via inhibition of PDHK activity.

15.
J Ethnopharmacol ; 239: 111898, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31028855

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plant-specific fungus of natural compound of Ascochyta viciae has traditionally been used in the treatment of sleeping sickness and tumors. The anti-tumor activities of the compounds obtained from Pisum sativum L were evaluated in this study. AIM OF THE STUDY: In this study, during the prolonged incubation, treatment of the LPS-stimulated tumor-like macrophage RAW 264.7 cells with ASC exhibited the shift of anti-inflammatory behavior to a type of necroptotic cell death named necroptosis. MATERIALS AND METHODS: Ascochlorin (ASC) purified from plant-specific fungus Ascochyta viciae is a natural compound with the trimethyl oxocyclohexyl structure and an anti-cancer and antibiotic agent. The fungus contributes to the Ascochyta blight disease complex of pea (Pisum sativum L). RAW 264.7 cells have been stimulated with LPS and treated with ASC. Cell viability of the LPS-treated RAW 264.7 cells and bone marrow-derived macrophage (BMDM) cells were examined. Flow cytometry analysis with 7AAD and Annexin V was examined for the apoptotic or necroptosis/late-apoptosis. Cleaved caspase-3, -7 and -8 as well as cleaved PARP were assessed with a caspase inhibitor, z-VAD-fmk. LPS-responsible human leukemic U937 and colon cancer SW480 and HT-29 cells were also examined for the cell viabilities. RESULTS: Flow cytometry analysis after Annexin V and 7AAD double staining showed that ASC alone induces apoptosis in RAW 264.7 cells, while it induces necroptosis/late-apoptosis in LPS-treated RAW 264.7 cells. 7AAD and Annexin V positive populations were increased in the LPS-treated cells with ASC. Although viability of LPS-treated cells with ASC was decreased, the amounts of cleaved caspase-3, -7 and -8 as well as cleaved PARP were reduced when compared with ASC-treated cells. Upon ASC treatment, the cleaved caspase-8 level was not changed, however, cleaved caspase-3, -7, and PARP were reduced in LPS-stimulated RAW 264.7 cells treated with ASC, claiming a caspase-8 independent necroptosis of ASC. Furthermore, ASC and LPS-cotreated cells which a caspase inhibitor, z-VAD-fmk, was pretreated, showed the decreased cell viability compared with control cells without the inhibitor. Cell viability of RAW 264.7 cells co-treated with ASC and LPS when treated with z-VAD was decreased. In the LPS-responsible human leukemic U937 and colon cancer SW480 and HT-29 cells, cell viabilities were decreased by 10 µM ASC. CONCLUSION: Prolonged stimulation of ASC with LPS induces the necroptosis in RAW cells. Activated immune cells may share the susceptibility of antitumor agents with the cancer cells.


Subject(s)
Alkenes/pharmacology , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Necrosis/chemically induced , Phenols/pharmacology , Animals , Caspases/metabolism , Cell Line, Tumor , Humans , Lipopolysaccharides/pharmacology , Mice , Necrosis/metabolism , RAW 264.7 Cells
16.
Front Pharmacol ; 10: 304, 2019.
Article in English | MEDLINE | ID: mdl-31001118

ABSTRACT

Toll-like receptor 4 (TLR4) and matrix metalloproteinase-9 (MMP-9) are known to play important roles in inflammatory diseases such as arteriosclerosis and plaque instability. The purpose of this study was to perform the effect of 4-O-carboxymethylascochlorin (AS-6) on MMP-9 expression in lipopolysaccharide (LPS)-induced murine macrophages and signaling pathway involved in its anti-inflammatory effect. Effect of AS-6 on MAPK/NF-κB/TLR4 signaling pathway in LPS-activated murine macrophages was examined using ELISA, Western blotting, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence immunoassay. MMP-9 enzyme activity was examined by gelatin zymography. AS-6 significantly suppressed MMP-9 and MAPK/NF-κB expression levels in LPS-stimulated murine macrophages. Expression levels of inducible nitric oxide synthase (iNOS), COX2, MMP-9, JNK, ERK, p38 phosphorylation, and NF-κB stimulated by LPS were also decreased by AS-6. Moreover, AS-6 suppressed TLR4 expression and dysregulated LPS-induced activators of transcription signaling pathway. The results of this study showed that AS-6 can inhibit LPS-stimulated inflammatory response by suppressing TLR4/MAPK/NF-κB signals, suggesting that AS-6 can be used to induce the stability of atherosclerotic plaque and prevent inflammatory diseases in an in vitro model.

17.
Sci Rep ; 9(1): 3969, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850682

ABSTRACT

The Warburg effect, wherein cancer cells prefer glycolysis rather than oxidative phosphorylation even under normoxic conditions, is a major characteristic of malignant tumors. Lactate dehydrogenase A (LDHA) is the main enzyme regulating the Warburg effect, and is thus, a major target for novel anti-cancer drug development. Through our ongoing screening of novel inhibitors, we found that several selenobenzene compounds have inhibitory effects on LDHA activity. Among them, 1-(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB) had the most potent inhibitory effect on the enzymatic activity of LDHA. The results from biochemical assays and computational modeling showed that PSTMB inhibited LDHA activity. In addition, PSTMB inhibited the growth of several tumor cell lines, including NCI-H460, MCF-7, Hep3B, A375, HT29, and LLC. In HT29 human colon cancer cells, PSTMB dose-dependently inhibited the viability of the cells and activity of LDHA, without affecting the expression of LDHA. Under both normoxic and hypoxic conditions, PSTMB effectively reduced LDHA activity and lactate production. Furthermore, PSTMB induced mitochondria-mediated apoptosis of HT29 cells via production of reactive oxygen species. These results suggest that PSTMB may be a novel candidate for development of anti-cancer drugs by targeting cancer metabolism.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene/pharmacology , Cell Death/drug effects , Cell Proliferation/drug effects , L-Lactate Dehydrogenase/antagonists & inhibitors , Neoplasms/drug therapy , Apoptosis/drug effects , Cell Line, Tumor , HT29 Cells , Humans , MCF-7 Cells , Neoplasms/metabolism , Reactive Oxygen Species/metabolism
18.
Sci Rep ; 9(1): 4292, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862964

ABSTRACT

N-glycolylneuraminic acid (Neu5Gc), a generic form of sialic acid, is enzymatically synthesized by cytidine-5'-monophospho-N-acetylneuraminic acid hydroxylase (CMAH). Although expression of pig CMAH gene pcmah encoding CMAH has been reported to be regulated by pathogenic infection and developmental processes, little is known about the mechanisms underlying the regulation of pcmah gene expression. The objective of this study was to determine mechanism(s) involved in intestine specific regulation of pcmah gene by identifying several cis-acting elements and nuclear transcription factors that could directly interact with these cis-acting elements. We identified intestine specific promoter region (Pi) of pcmah gene located at upstream regions of the 5'flanking region of exon 1a and found that the promoter region is responsible for the transcriptional regulation of 5'pcmah-1. Based on reporter assays using serially constructed luciferase genes with each deleted promoter, we demonstrated that the Pi promoter activity was more active in intestinal IPI-2I cells than that in kidney PK15 cells, corresponding to both mRNA expression patterns in the two cell lines. In addition, we found that Sp1 transcription factor was necessary for basal activity of Pi promoter and that Ets-1 contributed to intestine-specific activity of Pi promoter. This study helps us understand transcriptional regulation of pcmah in the intestine of pig tissues. It also allows us to consider potential roles of Neu5Gc in interaction with environmental factors present in the intestinal tissue during pathogenic infection and developmental process.


Subject(s)
Cytidine/metabolism , Mixed Function Oxygenases/metabolism , N-Acetylneuraminic Acid/metabolism , Animals , Cell Line , Cytidine/chemistry , N-Acetylneuraminic Acid/chemistry , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Promoter Regions, Genetic/genetics , Swine
19.
Int Immunopharmacol ; 68: 156-163, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30639961

ABSTRACT

Natural compound esculentoside B (EsB), (2S,4aR,6aR,6aS,6bR,8aR,9R,10R,11S,12aR,14bS)-11-hydroxy-9-(hydroxymethyl)-2 methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid with molecular weight of 664.833, isolated from roots of Phytolacca acinosa Roxb has been widely used as a constituent of traditional Chinese medicine (TCM). However, the anti-inflammatory capacity of EsB has not been reported yet. Therefore, the objective of this study was to investigate anti-inflammatory activities of EsB in LPS-treated macrophage RAW 264.7 cells. EsB could inhibit nitric oxide (NO) production. EsB also suppressed gene and protein expression levels of inducible isoform of NO synthase (NOS) and cyclooxygenase-2 in a dose-dependent manner. In addition, EsB decreased gene expression and protein secretion levels of pro-inflammatory cytokines such as IL-1ß, TNF-α, and IL-6. EsB remarkably suppressed nuclear translocation of nuclear factor kappa-B (NF-κB) from cytosolic space. Phosphorylation of IκB was also inhibited by EsB. Moreover, EsB specifically down-regulated phospho-c-Jun N-terminal kinase (p-JNK), but not p-p38 or phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2). Taken together, these results suggest that EsB has inhibitory effect on inflammatory response by inactivating NF-κB and p-JNK. It could be used as a new modulatory drug for effective treatment of inflammation-related diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , JNK Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Saponins/chemistry , Terpenes/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Survival/drug effects , Cytokines/genetics , Cytokines/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Saponins/pharmacology , Signal Transduction/drug effects , Terpenes/pharmacology
20.
J Cell Biochem ; 120(6): 9810-9819, 2019 06.
Article in English | MEDLINE | ID: mdl-30525244

ABSTRACT

A water-soluble saponin, Esculentoside H (EsH), 3-O-(O-ß-d-glucopyranosyl-(1→4)-ß-d-xylopyranosyl)-28-ß-d-glucopyranosylphytolaccagenin has been isolated and purified from the root extract of perennial plant Phytolacca esculenta. EsH is known to be an anticancer compound, having a capacity for TNF-α release. However, the effects of EsH on migration and growth in tumor cells have not yet been reported. In the current study, the suppressive effects of EsH on phorbol 12-myristate 13-acetate (PMA)-induced cell migration were examined in murine colon cancer CT26 cells and human colon cancer HCT116 cells. Interestingly, the transwell assay and wound healing show that EsH suppresses the PMA-induced migration and growth potential of HCT116 and CT26 colon cancer cells, respectively. EsH dose-dependently suppressed matrix metalloproteinases-9 (MMP-9) expression that was upregulated upon PMA treatment in messenger RNA levels and protein secretion. Since the expression of MMP-9 is correlated with nuclear factor-κB (NF-κB) signaling, it has been examined whether EsH inhibits PMA-induced IκB phosphorylation that leads to the suppression of NK-κB nuclear translocation. EsH repressed the phosphorylation level of JNK, but not extracellular signal-regulated kinase and p38 signaling when the cells were treated with PMA. Overall, these results demonstrated that EsH could suppress cancer migration through blockage of the JNK1/2 and NF-κB signaling-mediated MMP-9 expression.


Subject(s)
Cell Movement/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 9/biosynthesis , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Animals , Colonic Neoplasms , HCT116 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Oleanolic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL