Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(11): 5067-5073, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35258954

ABSTRACT

Aggregation of amyloidogenic proteins causing neurodegenerative diseases is an uncontrollable and contagious process that is often associated with lipid membranes in a highly complex physiological environment. Although several approaches using natural cells and membrane models have been reported, systematic investigations focusing on the association with the membranes are highly challenging, mostly because of the lack of proper molecular tools. Here, we report a new supramolecular approach using a synthetic cell system capable of controlling the initiation of protein aggregation and mimicking various conditions of lipid membranes, thereby enabling systematic investigations of membrane-dependent effects on protein aggregation by visualization. Extending this strategy through concurrent use of synthetic cells and natural cells, we demonstrate the potential of this approach for systematic and in-depth studies on interrogating inter- and intracellularly transmittable protein aggregation. Thus, this new approach offers opportunities for gaining insights into the pathological implications of contagious protein aggregation associated with membranes for neurotoxicity.


Subject(s)
Artificial Cells , Amyloidogenic Proteins/metabolism , Cell Membrane/metabolism , Humans , Lipids , Protein Aggregates , Protein Aggregation, Pathological
2.
Sci Rep ; 6: 21324, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887790

ABSTRACT

Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.

3.
Sci Rep ; 5: 16903, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26584638

ABSTRACT

Perpendicularly magnetized tunnel junctions (p-MTJs) show promise as reliable candidates for next-generation memory due to their outstanding features. However, several key challenges remain that affect CoFeB/MgO-based p-MTJ performance. One significant issue is the low thermal stability (Δ) due to the rapid perpendicular magnetic anisotropy (PMA) degradation during annealing at temperatures greater than 300 °C. Thus, the ability to provide thermally robust PMA characteristics is a key steps towards extending the use of these materials. Here, we examine the influence of a W spacer on double MgO/CoFeB/W/CoFeB/MgO frames as a generic alternative layer to ensure thermally-robust PMAs at temperatures up to 425 °C. The thickness-dependent magnetic features of the W layer were evaluated at various annealing temperatures to confirm the presence of strong ferromagnetic interlayer coupling at an optimized 0.55 nm W spacer thickness. Using this W layer we achieved a higher Δ of 78 for an approximately circular 20 nm diameter free layer device.

SELECTION OF CITATIONS
SEARCH DETAIL