Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Plants (Basel) ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891275

ABSTRACT

Plant breeding has evolved significantly over time with the development of transformation and genome editing techniques. These new strategies help to improve desirable traits in plants. Perilla is a native oil crop grown in Korea. The leaves contain many secondary metabolites related to whitening, aging, antioxidants, and immunity, including rosmarinic acid, vitamin E, luteolin, anthocyanins, and beta-carotene. They are used as healthy and functional food ingredients. It is an industrially valuable cosmetics crop. In addition, perilla seeds are rich in polyunsaturated fatty acids, such as α-linolenic acid and linoleic acid. They are known to be effective in improving neutral lipids in the blood, improving blood circulation, and preventing dementia and cardiovascular diseases, making them excellent crops whose value can be increased through improved traits. This research will also benefit perilla seeds, which can increase their stock through various methods, such as the increased production of functional substances and improved productivity. Recently, significant attention has been paid to trait improvement research involving gene-editing technology. Among these strategies, CRISPR/Cas9 is highly adaptable, enabling accurate and efficient genome editing, targeted mutagenesis, gene knockouts, and the regulation of gene transcription. CRISPR/Cas9-based genome editing has enormous potential for improving perilla; however, the regulation of genome editing is still at an early stage. Therefore, this review summarizes the enhancement of perilla traits using genome editing technology and outlines future directions.

2.
Nucleic Acids Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922688

ABSTRACT

Genome-level clonal decomposition of a single specimen has been widely studied; however, it is mostly limited to cancer research. In this study, we developed a new algorithm CLEMENT, which conducts accurate decomposition and reconstruction of multiple subclones in genome sequencing of non-tumor (normal) samples. CLEMENT employs the Expectation-Maximization (EM) algorithm with optimization strategies specific to non-tumor subclones, including false variant call identification, non-disparate clone fuzzy clustering, and clonal allele fraction confinement. In the simulation and in vitro cell line mixture data, CLEMENT outperformed current cancer decomposition algorithms in estimating the number of clones (root-mean-square-error = 0.58-0.78 versus 1.43-3.34) and in the variant-clone membership agreement (∼85.5% versus 70.1-76.7%). Additional testing on human multi-clonal normal tissue sequencing confirmed the accurate identification of subclones that originated from different cell types. Clone-level analysis, including mutational burden and signatures, provided a new understanding of normal-tissue composition. We expect that CLEMENT will serve as a crucial tool in the currently emerging field of non-tumor genome analysis.

3.
Plant Cell Rep ; 43(2): 56, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319432

ABSTRACT

KEY MESSAGE: This is the first report showing anthocyanin accumulation in the soybean cotyledon via genetic transformation of a single gene. Soybean [Glycine max (L.) Merrill] contains valuable components, including anthocyanins. To enhance anthocyanin production in Korean soybean Kwangankong, we utilized the R2R3-type MYB gene (IbMYB1a), known for inducing anthocyanin pigmentation in Arabidopsis. This gene was incorporated into constructs using two promoters: the CaMV 35S promoter (P35S) and the ß-conglycinin promoter (Pß-con). Kwangankong was transformed using Agrobacterium, and the presence of IbMYB1a and Bar transgenes in T0 plants was confirmed through polymerase chain reaction (PCR), followed by gene expression validation. Visual inspection revealed that one P35S:IbMYB1a and three Pß-con:IbMYB1a lines displayed seed color change. Pß-con:IbMYB1a T1 seeds accumulated anthocyanins in cotyledon outer layers, whereas P35S:IbMYB1a and non-transgenic black soybean (Cheongja 5 and Seum) accumulated anthocyanins in the seed coat. During the germination and growth phase, T1 seedlings from Pß-con:IbMYB1a lines exhibited anthocyanin pigmentation in cotyledons for up to 1 month without growth aberrations. High-performance liquid chromatography confirmed cyanidin-3-O-glucoside as the major anthocyanin in the Pß-con:IbMYB1a line (#3). We analyzed the expression patterns of anthocyanin biosynthesis genes, chalcone synthase 7,8, chalcone isomerase 1A, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, dihydroflavanol reductase 1, dihydroflavanol reductase 2, anthocyanidin synthase 2, anthocyanidin synthase 3, and UDP glucose flavonoid 3-O-glucosyltransferase in transgenic and control Kwangankong and black soybean (Cheongja 5 and Seum) seeds using quantitative real-time PCR. We conclude that the induction of gene expression in transgenic plants in comparison with Kwangankong was attributable to IbMYB1a transformation. Notably, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, and dihydroflavanol reductase 1 were abundantly expressed in black soybean seed coat, distinguishing them from transgenic cotyledons.


Subject(s)
Arabidopsis , Flavanones , Glycine max/genetics , Anthocyanins , Cotyledon/genetics , Pigmentation/genetics , Mixed Function Oxygenases
4.
Front Plant Sci ; 14: 1133518, 2023.
Article in English | MEDLINE | ID: mdl-37077633

ABSTRACT

Environmental cues regulate the transition of many plants from vegetative to flowering development. Day length, or photoperiod, is one cue that synchronizes flowering by changing seasons. Consequently, the molecular mechanism of flowering control is prominent in Arabidopsis and rice, where essential genes like FLOWERING LOCUS T (FT) homolog, HEADING DATE 3a (Hd3a), have been connected to flowering regulation. Perilla is a nutrient-rich leaf vegetable, and the flowering mechanism remains largely elusive. We identified flowering-related genes under short-day conditions using RNA sequencing to develop an enhanced leaf production trait using the flowering mechanism in the perilla. Initially, an Hd3a-like gene was cloned from the perilla and defined as PfHd3a. Furthermore, PfHd3a is highly rhythmically expressed in mature leaves under short-day and long-day conditions. Ectopic expression of PfHd3a in Atft-1 mutant plants has been shown to complement Arabidopsis FT function, resulting in early flowering. In addition, our genetic approaches revealed that overexpression of PfHd3a in perilla caused early flowering. In contrast, the CRISPR/Cas9 generated PfHd3a-mutant perilla showed significantly late flowering, resulting in approximately 50% leaf production enhancement compared to the control. Our results suggest that PfHd3a plays a vital role in regulating flowering in the perilla and is a potential target for molecular breeding in the perilla.

5.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500424

ABSTRACT

The root of Smilax china L. is used in traditional Korean medicine. We found that the Smilax china L. root extract has strong antimicrobial activity against two Cutibacterium acnes strains (KCTC 3314 and KCTC 3320). The aim of this study was to identify the beneficial properties of Smilax china L. extracts for their potential use as active ingredients in cosmetics for the treatment of human skin acne. The high-performance liquid chromatography (HPLC) and liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC/QTOF/MS) methods were used to obtain the profile of secondary metabolites from the ethyl acetate-soluble fraction of the crude extract. Agar diffusion and resazurin-based broth microdilution assays were used to evaluate antimicrobial activity and minimum inhibitory concentrations (MIC), respectively. Among the 24 metabolites, quercetin, resveratrol, and oxyresveratrol were the most potent compounds against Cutibacterium acnes. Minimum inhibitory concentrations of quercetin, resveratrol, and oxyresveratrol were 31.25, 125, and 250 µg/mL, respectively.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Smilax , Humans , Smilax/chemistry , Quercetin , Propionibacterium acnes/metabolism , Plant Extracts/chemistry , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Microbial Sensitivity Tests , Resveratrol , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Plant Pathol J ; 38(6): 603-615, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36503189

ABSTRACT

Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

7.
Article in English | MEDLINE | ID: mdl-36141561

ABSTRACT

Exercise can induce anti-inflammatory and antioxidant effects, for which regulation of sirtuins (SIRTs) may be a major consideration for exercise prescription. The purpose of this study was to investigate the effects of acute aerobic exercise, in particular its intensity, on systemic oxidative stress, inflammatory responses, and SIRT levels. Twenty healthy, untrained males were recruited and randomly assigned to moderate-intensity (MI, 65% VO2max, n = 10) and high-intensity (HI, 85% VO2max, n = 10) exercise. Blood samples were obtained pre-, immediately post-, and 1 h post-exercise for measurements of malonaldehyde (MDA), superoxide dis-mutase (SOD), interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, SIRT-1, SIRT-2, and SIRT-3. Overall, MDA, SOD, IL-6, SIRT-1, and SIRT-3 levels were significantly increased at post-exercise compared with pre-exercise regardless of exercise intensity (p < 0.05). The HI group had significantly higher MDA, SOD, and IL-6 levels than the MI group at post-exercise (p < 0.05), whereas no significant differences were observed in the IL-1ß, TNF-α, and SIRT-2 levels (p > 0.05). Altogether, these findings suggest that exercise-induced oxidative stress and inflammatory responses may be dependent on exercise intensity. Moreover, activation of inflammatory cytokines and SIRT family members may be dependent on the intensity of the exercise.


Subject(s)
Intramolecular Transferases , Sirtuins , Anti-Inflammatory Agents , Antioxidants , Cytokines , Healthy Volunteers , Humans , Inflammation , Interleukin-6 , Male , Malondialdehyde , Oxidative Stress , Superoxide Dismutase/metabolism , Superoxides , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142495

ABSTRACT

Phytic acid (PA) acts as an antinutrient substance in cereal grains, disturbing the bioavailability of micronutrients, such as iron and zinc, in humans, causing malnutrition. GmIPK1 encodes the inositol 1,3,4,5,6-pentakisphosphate 2-kinase enzyme, which converts myo-inopsitol-1,3,4,5,6-pentakisphosphate (IP5) to myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) in soybean (Glycine max L.). In this study, for developing soybean with low PA levels, we attempted to edit the GmIPK1 gene using the CRISPR/Cas9 system to introduce mutations into the GmIPK1 gene with guide RNAs in soybean (cv. Kwangankong). The GmIPK1 gene was disrupted using the CRISPR/Cas9 system, with sgRNA-1 and sgRNA-4 targeting the second and third exon, respectively. Several soybean Gmipk1 gene-edited lines were obtained in the T0 generation at editing frequencies of 0.1-84.3%. Sequencing analysis revealed various indel patterns with the deletion of 1-9 nucleotides and insertions of 1 nucleotide in several soybean lines (T0). Finally, we confirmed two sgRNA-4 Gmipk1 gene-edited homozygote soybean T1 plants (line #21-2: 5 bp deletion; line #21-3: 1 bp insertion) by PPT leaf coating assay and PCR analysis. Analysis of soybean Gmipk1 gene-edited lines indicated a reduction in PA content in soybean T2 seeds but did not show any defects in plant growth and seed development.


Subject(s)
Glycine max , Phytic Acid , CRISPR-Cas Systems , Gene Editing , Humans , Iron , Micronutrients , Mutation , Nucleotides , Seeds/genetics , Glycine max/genetics , Zinc
9.
Front Plant Sci ; 13: 1027688, 2022.
Article in English | MEDLINE | ID: mdl-36618614

ABSTRACT

The plant hormone gibberellic acid (GA) is important for plant growth and productivity. Actin-related proteins (ARPs) also play central roles in plant growth, including cell elongation and development. However, the relationships between ARPs and GA signaling and biosynthesis are not fully understood. Here, we isolated OsGASD, encoding an ARP subunit from rice (Oryza sativa), using the Ac/Ds knockout system. The osgasd knockout (Ko) mutation reduced GA3 content in shoots as well as plant growth and height. However, GA application restored the plant height of the osgasd Ko mutant to a height similar to that of the wild type (WT). Rice plants overexpressing OsGASD (Ox) showed increased plant height and grain yield compared to the WT. Transcriptome analysis of flag leaves of OsGASD Ox and osgasd Ko plants revealed that OsGASD regulates cell development and the expression of elongation-related genes. These observations suggest that OsGASD is involved in maintaining GA homeostasis to regulate plant development, thereby affecting rice growth and productivity.

10.
Front Plant Sci ; 12: 698882, 2021.
Article in English | MEDLINE | ID: mdl-34733296

ABSTRACT

Soybean is a globally important crop species, which is subject to pressure by insects and weeds causing severe substantially reduce yield and quality. Despite the success of transgenic soybean in terms of Bacillus thuringiensis (Bt) and herbicide tolerance, unforeseen mitigated performances have still been inspected due to climate changes that favor the emergence of insect resistance. Therefore, there is a need to develop a biotech soybean with elaborated gene stacking to improve insect and herbicide tolerance in the field. In this study, new gene stacking soybean events, such as bialaphos resistance (bar) and pesticidal crystal protein (cry)1Ac mutant 2 (M#2), are being developed in Vietnamese soybean under field condition. Five transgenic plants were extensively studied in the herbicide effects, gene expression patterns, and insect mortality across generations. The increase in the expression of the bar gene by 100% in the leaves of putative transgenic plants was a determinant of herbicide tolerance. In an insect bioassay, the cry1Ac-M#2 protein tested yielded higher than expected larval mortality (86%), reflecting larval weight gain and weight of leaf consumed were less in the T1 generation. Similarly, in the field tests, the expression of cry1Ac-M#2 in the transgenic soybean lines was relatively stable from T0 to T3 generations that corresponded to a large reduction in the rate of leaves and pods damage caused by Lamprosema indicata and Helicoverpa armigera. The transgenic lines converged two genes, producing a soybean phenotype that was resistant to herbicide and lepidopteran insects. Furthermore, the expression of cry1Ac-M#2 was dominant in the T1 generation leading to the exhibit of better phenotypic traits. These results underscored the great potential of combining bar and cry1Ac mutation genes in transgenic soybean as pursuant of ensuring resistance to herbicide and lepidopteran insects.

11.
Plants (Basel) ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34834905

ABSTRACT

CRISPR/Cas9 is a commonly used technique in reverse-genetics research to knock out a gene of interest. However, when targeting a multigene family or multiple genes, it is necessary to construct a vector with multiple single guide RNAs (sgRNAs) that can navigate the Cas9 protein to the target site. In this protocol, the Golden Gate cloning method was used to generate multiple sgRNAs in the Cas9 vector. The vectors used were pHEE401E_UBQ_Bar and pBAtC_tRNA, which employ a one-promoter/one-sgRNA and a polycistronic-tRNA-gRNA strategy, respectively. Golden Gate cloning was performed with type IIS restriction enzymes to generate gRNA polymers for vector inserts. Four sgRNAs containing the pHEE401E_UBQ_Bar vector and four to six sgRNAs containing the pBAtC_tRNA vector were constructed. In practice, we constructed multiple sgRNAs targeting multiple genes of FAD2 and FATB in soybean using this protocol. These three vectors were transformed into soybeans using the Agrobacterium-mediated method. Using deep sequencing, we confirmed that the T0 generation transgenic soybean was edited at various indel ratios in the predicted target regions of the FAD2 and FATB multigenes. This protocol is a specific guide that allows researchers to easily follow the cloning of multiple sgRNAs into commonly used CRISPR/Cas9 vectors for plants.

12.
GM Crops Food ; 12(1): 303-314, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33648419

ABSTRACT

The safety of transgenic Bt rice containing bacteria-derived mCry1Ac gene from Bacillus thuringiensis (Bt) was assessed by conducting field trials at two locations for two consecutive years in South Korea, using the near-isogenic line comparator rice cultivar ('Ilmi', non-Bt rice) and four commercial cultivars as references. Compositional analyses included measurement of proximates, minerals, amino acids, fatty acids, vitamins, and antinutrients. Significant differences between Bt rice and non-Bt rice were detected; however, all differences were within the reference range. The statistical analyses, including analysis of % variability, analysis of similarities (ANOISM), similarity percentage (SIMPER) analysis, and permutational multivariate analysis of variance (PERMANOVA) were performed to study factors contributing to compositional variability. The multivariate analyses revealed that environmental factors more influenced rice components' variability than by genetic factors. This approach was shown to be a powerful method to provide meaningful evaluations between Bt rice and its comparators. In this study, Bt rice was proved to be compositionally equivalent to conventional rice varieties through multiple statistical methods.


Subject(s)
Bacillus thuringiensis , Oryza , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Insecta , Oryza/genetics , Plants, Genetically Modified/genetics , Republic of Korea
13.
J Sci Food Agric ; 101(6): 2601-2613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33336790

ABSTRACT

BACKGROUND: PfFAD3 transgenic soybean expressing omega-3 fatty acid desaturase 3 of Physaria produces increased level of α-linolenic acid in seed. Composition data of non-transgenic conventional varieties is important in the safety assessment of the genetically-modified (GM) crops in the context of the natural variation. RESULTS: The natural variation was characterized in seed composition of 13 Korean soybean varieties grown in three locations in South Korea for 2 years. Univariate analysis of combined data showed significant differences by variety and cultivation environment for proximates, minerals, anti-nutrients, and fatty acids. Percent variability analysis demonstrated that genotype, environment and the interaction of environment with genotype contributed to soybean seed compositions. Principal component analysis and orthogonal projections to latent structure discriminant analysis indicated that significant variance in compositions was attributable to location and cultivation year. The composition of three PfFAD3 soybean lines for proximates, minerals, anti-nutrients, and fatty acids was compared to a non-transgenic commercial comparator (Kwangankong, KA), and three non-transgenic commercial varieties grown at two sites in South Korea. Only linoleic and linolenic acids significantly differed in PfFAD3-1 lines compared to KA, which were expected changes by the introduction of the PfFAD3-1 trait in KA. CONCLUSION: Genotype, environment, and the interaction of environment with genotype contributed to compositional variability in soybean. PfFAD3-1 soybean is equivalent to the conventional varieties with respect to these components. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassicaceae/enzymology , Fatty Acid Desaturases/genetics , Glycine max/chemistry , Glycine max/genetics , Plant Proteins/genetics , Plants, Genetically Modified/chemistry , Amino Acids/analysis , Amino Acids/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Minerals/analysis , Minerals/metabolism , Nutritive Value , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Republic of Korea , Glycine max/classification , Glycine max/metabolism
14.
Plant Signal Behav ; 16(2): 1849490, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33300429

ABSTRACT

Height and leaf morphology are important agronomic traits of the major crop plant rice (Oryza sativa). In previous studies, the dwarf and narrow leaf genes (dnl1, dnl2 and dnl3) have identified in rice. Using the Ac/Ds knockout system, we found a new dwarf and narrow leaf (dnl) mutant and identified mutated gene. The dnl-4 mutant showed reduced plant height and leaf blade width compared to the wild type, and increased leaf inclination. The morphological defects of the mutant were caused by the suppressed expression of the DNL-4 gene, which encodes a pfkB carbohydrate kinase protein. These results suggest that DNL-4 expression is involved in modulating plant height and leaf growth. Furthermore, DNL-4 expression also affects productivity in rice: the dnl-4 mutant exhibited reduced panicle length and grain width compared with the wild type. To understand DNL-4 function in rice, we analyzed the expression levels of leaf growth-related genes, such as NAL1, NAL7, and CSLD4, in the dnl-4 mutant. Expression of NAL1 and NAL7 was downregulated in the dnl-4 mutant compared to the wild type. The observation that DNL-4 expression corresponded with that of NAL1 and NAL7 is consistent with the narrow leaf phenotype of the dnl-4 mutant. These results suggest that DNL-4 regulates plant height and leaf structure in rice.


Subject(s)
Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics
15.
Mol Breed ; 41(1): 1, 2021 Jan.
Article in English | MEDLINE | ID: mdl-37309526

ABSTRACT

Elucidation of the genomic organizations of transgene insertion sites is essential for the genetic studies of transgenic plants. Herein, we establish an analysis pipeline that identifies the transgene insertion sites as well as the presence of vector backbones, through de novo genome assembly with high-throughput sequencing data in two transgenic soybean lines, AtYUCCA6-#5 and 35S-UGT72E3/2-#7. Sequencing data of approximately 28× and 29× genome coverages for each line generated by high-throughput sequencing were de novo assembled. The databases generated from the de novo assembled sequences were used to search contigs that contained putative insertion sites and their flanking sequences (integration sites) of transgene fragments using transgenic vector sequences as queries. The predicted integration site sequences, which are located at three annotated genes that might regulate plant development or confer disease resistance, were then confirmed by local alignment against the soybean reference genome and PCR amplification. As results, we revealed the precise transgene-flanking sequences and sequence rearrangements at insertion sites in both the transgenic lines, as well as the aberrant insertion of a transgene fragment. Consequently, relative to experimental or enrichment technologies, our approach is straightforward and time-effective, providing an alternative method for the identification of insertion sites in transgenic plants.

16.
Sci Total Environ ; 762: 143073, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33189381

ABSTRACT

Pollen-mediated gene flow of genetically modified crops to their wild relatives can facilitate the spread of transgenes into the ecosystem and alter the fitness of the consequential progeny. A two-year field study was conducted to quantify the gene flow from glufosinate-ammonium resistant (GR) soybean (Glycinemax) to its wild relative, wild soybean (G. soja), and assess the potential weed risk of hybrids resulting from the gene flow during their entire life cycle under field conditions in Korea, where wild soybean is the natural inhabitant. Pollen-mediated gene flow from GR soybeans to wild soybeans ranged from 0.292% (mixed planting) to 0.027% at 8 m distance. The log-logistic model described the gene flow rate with increasing distance from GR soybean to wild soybean; the estimated effective isolation distance for 0.01% gene flow between GR and wild soybeans was 37.7 m. The F1 and F2 hybrids exhibited the intermediate characteristics of their parental soybeans in their vegetative and reproductive stages. Canopy height and stem length of hybrids were close to those of wild soybean, which shows an indeterminate growth; the numbers of flowers, pods, and seeds per hybrid plant were close to those of wild soybean and significantly higher than those of GR soybean. Seed longevity of F2 hybrid plants was also intermediate but significantly greater than that of GR soybean due to high seed dormancy. Our results suggest that transgenes of the GR soybean might disperse into wild populations and persist in the agroecosystem of the genetic origin regions due to the pollen-mediated gene flow and the relatively high fitness of the hybrid progeny.


Subject(s)
Gene Flow , Glycine max , Aminobutyrates , Crops, Agricultural/genetics , Ecosystem , Plants, Genetically Modified/genetics , Pollen/genetics , Republic of Korea , Risk Assessment , Glycine max/genetics
17.
Neurosurgery ; 88(1): 106-112, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32735666

ABSTRACT

BACKGROUND: Compressive optic neuropathy is the most common indication for transsphenoidal surgery for pituitary adenomas. Optical coherence tomography (OCT) is a useful visual assessment tool for predicting postoperative visual field recovery. OBJECTIVE: To analyze visual parameters and their association based on long-term follow-up. METHODS: Only pituitary adenoma patients with abnormal visual field defects were selected. A total of 188 eyes from 113 patients assessed by visual field index (VFI) and 262 eyes from 155 patients assessed by mean deviation (MD) were enrolled in this study. Postoperative VFI, MD, and retinal nerve fiber layer (RNFL) thickness were evaluated and followed up. After classifying the patients into normal (>5%) and thin (<5%) RNFL groups, we investigated whether preoperative RNFL could predict visual field outcomes. We also observed how RNFL changes after surgery on a long-term basis. RESULTS: Both preoperative VFI and MD had a linear proportional relationship with preoperative RNFL thickness. Sustained improvement of the visual field was observed after surgery in both groups, and the degree of improvement over time in each group was similar. RNFL thickness continued to decrease until 36 mo after surgery (80.2 ± 13.3 µm to 66.6 ± 11.9 µm) while visual field continued to improve (VFI, 61.8 ± 24.5 to 84.3 ± 15.4; MD, -12.9 ± 7.3 dB to -6.3 ± 5.9 dB). CONCLUSION: Patients with thin preoperative RNFL may experience visual recovery similar to those with normal preoperative RNFL; however, the probability of normalized visual fields was not comparable. RNFL thickness showed a strong correlation with preoperative visual field defect. Long-term follow-up observation revealed a discrepancy between anatomic and functional recovery.


Subject(s)
Adenoma/complications , Nerve Compression Syndromes/etiology , Pituitary Neoplasms/complications , Recovery of Function , Retinal Neurons/pathology , Adenoma/surgery , Adult , Female , Follow-Up Studies , Humans , Male , Middle Aged , Nerve Compression Syndromes/pathology , Neurosurgical Procedures , Pituitary Neoplasms/surgery , Postoperative Period , Recovery of Function/physiology , Retina/diagnostic imaging , Retina/pathology , Retrospective Studies , Tomography, Optical Coherence/methods , Vision Disorders/etiology , Vision Disorders/pathology
18.
Yonsei Med J ; 61(4): 341-348, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32233177

ABSTRACT

PURPOSE: This study aimed to predict the surgical outcomes of diffuse idiopathic skeletal hyperostosis (DISH)-related dysphagia (DISH-phagia) and to evaluate the importance of prevertebral soft tissue thickness (PVST). MATERIALS AND METHODS: In total, 21 surgeries (anterior osteophytectomy or anterior cervical decompression and fixation) were included in this study for DISH-phagia from 2003 to 2019. Clinical outcomes were assessed using the Dysphagia Outcome and Severity Scale (DOSS) preoperatively, at 1 month postoperatively, and last follow up (mean 29.5 months). PVST was measured using lateral plain radiographs. Paired t-test and Spearman's correlation test was used to identify relationships between various PVST indices and DOSS. RESULTS: Comparisons were made from 17 patients out of 21, in which the record had all of three measurements. The narrowest PVST preoperatively was 2.55±0.90 mm, with a DOSS score of 4.47±1.61, and that at 1 month after surgery was 5.02±2.33 mm, with a DOSS score of 6.12±1.32. At last follow up, PVST and DOSS values were 3.78±0.92 mm and 5.82±1.34, and three patients experienced symptom relapse. Significant relationships were found between PVST and DOSS at all time points: before surgery (R=0.702, p<0.001), 1 month after surgery (R=0.539, p=0.012), and last follow up (R=0.566, p=0.020). CONCLUSION: Surgical removal of anterior osteophytes is an effective treatment option for DISH-phagia, and PVST is a useful parameter in DISH-phagia. The goal of DISH surgery should be to remove DISH as much as possible to ensure sufficient PVST postoperatively.


Subject(s)
Cervical Vertebrae/surgery , Deglutition Disorders/surgery , Hyperostosis, Diffuse Idiopathic Skeletal/surgery , Osteophyte/complications , Aged , Cervical Vertebrae/diagnostic imaging , Cross-Sectional Studies , Decompression, Surgical , Deglutition Disorders/diagnostic imaging , Deglutition Disorders/etiology , Female , Humans , Hyperostosis, Diffuse Idiopathic Skeletal/complications , Hyperostosis, Diffuse Idiopathic Skeletal/diagnostic imaging , Male , Middle Aged , Neck/surgery , Neurosurgical Procedures , Osteophyte/diagnostic imaging , Osteophyte/surgery , Postoperative Period , Radiography , Recurrence , Retrospective Studies , Treatment Outcome
19.
Yonsei Med J ; 61(3): 257-261, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32102127

ABSTRACT

Esthesioneuroblastoma as a source of ectopic Cushing's syndrome is rare, and to the best of our knowledge, only 20 cases have been reported worldwide. A 46-year-old healthy man visited a local clinic for general weakness and hyposmia, and underwent examination with serial endocrinological workup and brain imaging. 68Gallium-DOTA-TOC positron emission tomography scan was helpful where diagnosis of sellar MRI and inferior petrosal sinus sampling were discordant. Combined transcranial and endoscopic endonasal approach surgery was performed, and a diagnosis of esthesioneuroblastoma was given.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Cushing Syndrome/complications , Esthesioneuroblastoma, Olfactory/complications , Cushing Syndrome/diagnostic imaging , Cushing Syndrome/pathology , Esthesioneuroblastoma, Olfactory/diagnostic imaging , Esthesioneuroblastoma, Olfactory/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Postoperative Care , Tomography, X-Ray Computed
20.
J Cerebrovasc Endovasc Neurosurg ; 21(3): 163-168, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31886152

ABSTRACT

Sinus pericranii (SP) is a rare vascular anomaly of the scalp that consists of an abnormal pericranial venous channel connected to adjacent dural venous sinuses. Most SP are asymptomatic and are found in the pediatric age group. We aim to report a case of symptomatic SP in adult and describe the clinical, radiological, and pathohistological findings to help understand and differentiate this lesion from other scalp lesions. A 40-year-old man with a scalp mass was admitted to our hospital complaining of headache. The lesion enlarged when the patient was in a recumbent position or during Valsalva maneuver. The radiologic imaging suggested its diagnosis as an accessory type of SP with bone erosion. Surgical resection and cranioplasty were successfully performed, and the related headache also gradually subsided. At the 3-year follow-up, there was no recurrence on magnetic resonance imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...