Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 18547, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811229

ABSTRACT

Membrane integral ATP synthases produce adenosine triphosphate, the universal "energy currency" of most organisms. However, important details of proton driven energy conversion are still unknown. We present the first high-resolution structure (2.3 Å) of the in meso crystallized c-ring of 14 subunits from spinach chloroplasts. The structure reveals molecular mechanisms of intersubunit contacts in the c14-ring, and it shows additional electron densities inside the c-ring which form circles parallel to the membrane plane. Similar densities were found in all known high-resolution structures of c-rings of F1FO ATP synthases from archaea and bacteria to eukaryotes. The densities might originate from isoprenoid quinones (such as coenzyme Q in mitochondria and plastoquinone in chloroplasts) that is consistent with differential UV-Vis spectroscopy of the c-ring samples, unusually large distance between polar/apolar interfaces inside the c-ring and universality among different species. Although additional experiments are required to verify this hypothesis, coenzyme Q and its analogues known as electron carriers of bioenergetic chains may be universal cofactors of ATP synthases, stabilizing c-ring and prevent ion leakage through it.


Subject(s)
Mitochondrial Proton-Translocating ATPases/ultrastructure , Plant Proteins/ultrastructure , Protein Structure, Quaternary , Adenosine Triphosphate/biosynthesis , Chloroplasts/enzymology , Coenzymes/metabolism , Crystallography, X-Ray , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Plant Proteins/metabolism , Protein Conformation , Protein Subunits/metabolism , Spinacia oleracea/enzymology , Ubiquinone/metabolism
3.
Dokl Biochem Biophys ; 464: 338-40, 2015.
Article in English | MEDLINE | ID: mdl-26518563

ABSTRACT

This work is devoted to the study and obtaining of new radioprotective agents based on natural flavonoid genistein and spherical amorphous nanoparticles (SANPs) produced from a mixture of birch bark triterpenoids. The physicochemical characteristics of the nanoparticles were studied by electron microscopy, dynamic light scattering, and UV-VIS spectroscopy. The radioprotective efficacy of the nanodrug in vivo and the possibility of its use as a radioprotective agent was shown.


Subject(s)
Betula , Genistein/pharmacology , Metal Nanoparticles , Phytotherapy , Plant Preparations/pharmacology , Radiation-Protective Agents/pharmacology , Animals , Animals, Outbred Strains , Betula/chemistry , Cholesterol Esters/chemistry , Drug Evaluation, Preclinical , Genistein/chemical synthesis , Genistein/chemistry , Genistein/toxicity , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Particle Size , Pentacyclic Triterpenes/chemistry , Plant Bark/chemistry , Plant Preparations/chemical synthesis , Plant Preparations/chemistry , Plant Preparations/toxicity , Radiation Injuries, Experimental/drug therapy , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/toxicity , Random Allocation , Survival Analysis , Treatment Outcome , Triterpenes/chemistry
4.
Bioorg Khim ; 41(2): 185-94, 2015.
Article in Russian | MEDLINE | ID: mdl-26165125

ABSTRACT

This work is devoted to the study of nanoparticles based on amphiphilic meso-arylporphyrins and spherical amorphous nanoparticles (SANp), consisting of birch bark triterpenoids mixture. Nanoparticles were investigated by electron microscopy, dynamic light scattering, UV spectroscopy and fluorimetry. It was shown the efficiency of the inclusion of porphyrin sensitizer to the nanoparticles and the use of these nanoparticles as drug delivery system.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Porphyrins/chemistry , Terpenes/chemistry , Particle Size
5.
J Membr Biol ; 247(9-10): 997-1004, 2014 10.
Article in English | MEDLINE | ID: mdl-25192977

ABSTRACT

Amphipols (APols) have become important tools for the stabilization, folding, and in vitro structural and functional studies of membrane proteins (MPs). Direct crystallization of MPs solubilized in APols would be of high importance for structural biology. However, despite considerable efforts, it is still not clear whether MP/APol complexes can form well-ordered crystals suitable for X-ray crystallography. In the present work, we show that an APol-trapped MP can be crystallized in meso. Bacteriorhodopsin (BR) trapped by APol A8-35 was mixed with a lipidic mesophase, and crystallization was induced by adding a precipitant. The crystals diffract beyond 2 Å. The structure of BR was solved to 2 Å and found to be indistinguishable from previous structures obtained after transfer from detergent solutions. We suggest the proposed protocol of in meso crystallization to be generally applicable to APol-trapped MPs.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/ultrastructure , Crystallization/methods , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Propylamines/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/ultrastructure , Protein Conformation , Solubility , Solutions
6.
J Membr Biol ; 247(9-10): 971-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25192978

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee-Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 10(2). SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/ultrastructure , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Polymers/chemistry , Propylamines/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Feasibility Studies , Hydrophobic and Hydrophilic Interactions , Solubility , Surface-Active Agents/chemistry
7.
Chem Phys Lipids ; 165(4): 382-6, 2012 May.
Article in English | MEDLINE | ID: mdl-22197998

ABSTRACT

In the course of structure-function investigations of lipids a phosphatidylcholine molecule with short and rigid tails, di-2,4-hexadienoylphosphatidylcholine (DiSorbPC), was synthesized and studied in comparison with its saturated analog, dihexanoylphosphatidylcholine (DHPC). Conjugated double bonds in the acyl chains in DiSorbPC reduce considerably the number of possible conformers of the lipid within an aggregate. This leads to impaired packing of unsaturated acyl chains and thus, to a surprisingly high (115 Å(2)) area per molecule for DiSorbPC at the air-water interface and failure to form micelles of regular size and shape. Details on DiSorbPC aggregation and packing provided by a set of experimental techniques combined with molecular dynamics simulations are presented.


Subject(s)
Micelles , Phosphatidylcholines/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Surface Tension
8.
Acta Naturae ; 3(2): 90-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-22649687

ABSTRACT

Specific interactions between transmembrane α-helices, to a large extent, determine the biological function of integral membrane proteins upon normal development and in pathological states of an organism. Various membrane-like media, partially those mimicking the conditions of multicomponent biological membranes, are used to study the structural and thermodynamic features that define the character of oligomerization of transmembrane helical segments. The choice of the composition of the membrane-mimicking medium is conducted in an effort to obtain a biologically relevant conformation of the protein complex and a sample that would be stable enough to allow to perform a series of long-term experiments with its use. In the present work, heteronuclear NMR spectroscopy and molecular dynamics simulations were used to demonstrate that the two most widely used media (detergent DPC micelles and lipid DMPC/DHPC bicelles) enable to perform structural studies of the specific interactions between transmembrane α-helices by the example of dimerizing the transmembrane domain of the bitopic protein glycophorin A. However, a number of peculiarities place lipid bicelles closer to natural lipid bilayers in terms of their physical properties.

9.
Acta Naturae ; 3(3): 77-84, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22649697

ABSTRACT

The fibroblast growth factor receptor 3 (FGFR3) is a protein belonging to the family of receptor tyrosine kinases. FGFR3 plays an important role in human skeletal development. Mutations in this protein, including Gly380Arg or Ala391Glu substitutions in the transmembrane (TM) region, can cause different disorders in bone development. The determination of the spatial structure of the FGFR3 TM domain in a normal protein and in a protein with single Gly380Arg and Ala391Glu mutations is essential in order to understand the mechanisms that control dimerization and signal transduction by receptor tyrosine kinases. The effective system of expression of eukaryotic genes in bacteria and the purification protocol for the production of milligram amounts of both normal TM fragments of FGFR3 and those with single pathogenic mutations Gly380Arg and Ala391Glu, as well as their(15)N- and [(15)N,(13)C]-isotope-labelled derivatives, were described. Each peptide was produced inEscherichia coliBL21(DE3)pLysS cells as a C-terminal extension of thioredoxin A. The purification protocol involved immobilized metal affinity chromatography and cation- and anion-exchange chromatography, as well as the fusion protein cleavage with the light subunit of human enterokinase. The efficiency of the incorporation of target peptides into DPC/SDS and DPC/DPG micelles was confirmed using NMR spectroscopy. The described methodology of production of the native FGFR3 TM domain in norma and with single Gly380Arg and Ala391Glu mutations enables one to study their spatial structure using high-resolution heteronuclear NMR spectroscopy.

10.
FEBS Lett ; 584(19): 4193-6, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20831870

ABSTRACT

The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.


Subject(s)
Bacillales/genetics , Bacillales/metabolism , Bacteriorhodopsins/genetics , Bacteriorhodopsins/metabolism , Proton Pumps/genetics , Proton Pumps/metabolism , Amino Acid Sequence , Arctic Regions , Bacillales/isolation & purification , Bacteriorhodopsins/chemistry , Base Sequence , Cloning, Molecular , DNA Primers/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Molecular Sequence Data , Proton Pumps/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Russia , Spectrophotometry
11.
Biochemistry (Mosc) ; 75(7): 881-91, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20673212

ABSTRACT

To elaborate a high-performance system for expression of genes of G-protein coupled receptors (GPCR), methods of direct and hybrid expression of 17 GPCR genes in Escherichia coli and selection of strains and bacteria cultivation conditions were investigated. It was established that expression of most of the target GPCR fused with the N-terminal fragment of OmpF or Mistic using media for autoinduction provides high output (up to 50 mg/liter).


Subject(s)
Escherichia coli/genetics , Gene Expression , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Cloning, Molecular , Escherichia coli/metabolism , Humans , Multigene Family , Protein Conformation , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
12.
Biochemistry (Mosc) ; 74(12): 1344-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19961415

ABSTRACT

An efficient method is described for production of membrane protein KCNE3 and its isotope labeled derivatives ((15)N-, (15)N-/13C-) in amounts sufficient for structural-functional investigations. The purified protein preparation within different detergent micelles was characterized using dynamic light scattering, CD spectroscopy, and NMR spectroscopy. It is shown that within DPC/LDAO micelles the protein is in monomeric form and acquires mainly alpha-helical conformation. The existence of cross-peaks for all glycines of the (15)N-HSQC NMR spectra as well as relatively small line widths (~20 Hz) confirm the high quality of the preparation and the possibility of obtaining structural-dynamic information on KCNE3 by high resolution heteronuclear NMR spectroscopy.


Subject(s)
Potassium Channels, Voltage-Gated/chemistry , Circular Dichroism , Humans , Magnetic Resonance Spectroscopy , Micelles , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
13.
Biochemistry (Mosc) ; 74(7): 756-65, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19747096

ABSTRACT

High-resolution NMR is shown to be applicable for investigation of membrane proteins and membrane-active peptides embedded into lipid-protein nanodiscs (LPNs). (15)N-Labeled K+-channel from Streptomyces lividans (KcsA) and the antibiotic antiamoebin I from Emericellopsis minima (Aam-I) were embedded in LPNs of different lipid composition. Formation of stable complexes undergoing isotropic motion in solution was confirmed by size-exclusion chromatography and (31)P-NMR spectroscopy. The 2D 1H-(15)N-correlation spectra were recorded for KcsA in the complex with LPN containing DMPC and for Aam-I in LPNs based on DOPG, DLPC, DMPC, and POPC. The spectra recorded were compared with those in detergent-containing micelles and small bicelles commonly used in high-resolution NMR spectroscopy of membrane proteins. The spectra recorded in LPN environments demonstrated similar signal dispersion but significantly increased (1)H(N) line width. The spectra of Aam-I embedded in LPNs containing phosphatidylcholine showed significant selective line broadening, thus suggesting exchange process(es) between several membrane-bound states of the peptide. (15)N relaxation rates were measured to obtain the effective rotational correlation time of the Aam-I molecule. The obtained value (approximately 40 nsec at 45 degrees C) is indicative of additional peptide motions within the Aam-I/LPN complex.


Subject(s)
Bacterial Proteins/chemistry , Lipids/chemistry , Magnetic Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Nanostructures/chemistry , Peptides/chemistry , Potassium Channels/chemistry , Hypocreales/chemistry , Peptaibols
14.
Rev Sci Instrum ; 78(3): 033501, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17411179

ABSTRACT

The GIT-32 current generator was developed for experiments with current carrying pulsed plasma. The main parts of the generator are capacitor bank, multichannel multigap spark switches, low inductive current driving lines, and central load part. The generator consists of four identical sections, connected in parallel to one load. The capacitor bank is assembled from 32 IEK-100-0.17 (0.17 microF, 40 nH, 100 kV) capacitors, connected in parallel. It stores approximately 18 kJ at 80 kV charging voltage. Each two capacitors are commuted to a load by a multigap spark switch with eight parallel channels. Switches operate in ambient air at atmospheric pressure. The GIT-32 generator was tested with 10, 15, and 20 nH inductive loads. At 10 nH load and 80 kV of charging voltage it provides 1 MA of current amplitude and 490 ns rise time with 0.8 Omega damping resistors in discharge circuit of each capacitor and 1.34 MA530 ns without resistors. The net generator inductance without a load was optimized to be as low as 12 nH, which results in extremely low self-impedance of the generator ( approximately 0.05 Omega). It ensures effective energy coupling with low impedance loads like Z pinch. The generator operates reliably without any adjustments in 40-80 kV range of charging voltage. Maximum jitter (relative to a triggering pulse) at 40 kV charging voltage is about 7 ns and lower at higher charging voltages. Operation and handling are very simple, because no oil and no purified gases are required for the generator. The GIT-32 generator has dimensions of 3200 x 3200 x 400 mm(3) and total weight of about 2500 kg, thus manifesting itself as a simple, robust, and cost effective apparatus.

15.
Biophys J ; 84(4): 2373-81, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12668446

ABSTRACT

The cubic phase of monoolein has successfully been used for crystallization of a number of membrane proteins. However, the mechanism of protein crystallization in the cubic phase is still unknown. It was hypothesized, that crystallization occurs at locally formed patches of bilayers. To get insight into the stability of the cubic phase, we investigated the effect of different phospholipids and a model transmembrane peptide on the lipid organization in mixed monoolein systems. Deuterium-labeled 1-oleoyl-rac-[(2)H(5)]-glycerol was used as a selective probe for (2)H NMR. The phase behavior of the phospholipids was followed by (31)P NMR. Upon incorporation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, or phosphatidic acid, the cubic phase of monoolein transformed into the L(alpha) or H(II) phase depending on the phase preference of the phospholipid and its concentration. The ability of phospholipids to destabilize the cubic phase was found to be dependent on the phospholipid packing properties. Electrostatic repulsion facilitated the cubic-to-L(alpha) transition. Incorporation of the transmembrane peptide KALP31 induced formation of the L(alpha) phase with tightly packed lipid molecules. In all cases when phase separation occurs, monoolein and phospholipid participate in both phases. The implications of these findings for protein crystallization are discussed.


Subject(s)
Crystallization/methods , Crystallography/methods , Glycerides/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Deuterium , Drug Stability , Macromolecular Substances , Magnetic Resonance Spectroscopy , Membrane Fluidity , Membrane Proteins/chemistry , Molecular Conformation , Phosphatidic Acids/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Phospholipids/classification , Phosphorus Isotopes
16.
Chem Phys Lipids ; 117(1-2): 75-81, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12191846

ABSTRACT

We have previously shown that proteins such as beta-lactoglobulin and lysozyme insert into monoglyceride monolayers and are able to induce an L(beta) to coagel phase transition in monoglyceride bilayers. These studies gave a first indication that protein stability could be an important factor for these interactions. This study therefore aims at further investigating the potential role of protein stability on protein-monoglyceride interactions. To this end we studied the interaction of stable and destabilized alpha-lactalbumin with monostearoylglycerol. Our results show that protein stability is important for the insertion of proteins into a monostearoylglycerol monolayer, such that the lower the stability of the protein the better the protein inserts. In marked contrast to beta-lactoglobulin and lysozyme we found that destabilized alpha-lactalbumin does not induce the L(beta) to coagel phase transition in monoglyceride bilayers. We propose that this is due to an increased surface coverage by the protein which could result from the unfolding of the protein upon binding to the interface.


Subject(s)
Glycerides/chemistry , Lactoglobulins/chemistry , Muramidase/chemistry , Calorimetry, Differential Scanning , Freeze Fracturing , Microscopy, Electron , Nuclear Magnetic Resonance, Biomolecular
17.
Biophys J ; 82(2): 843-51, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11806926

ABSTRACT

The phase behavior of a 1-[(2)H(35)]-stearoyl-rac-glycerol ([(2)H(35)]-MSG)/dicetylphosphate (DCP) mixture and its interaction with beta-lactoglobulin and lysozyme were studied by (2)H and (31)P nuclear magnetic resonance (NMR). The behavior of the lipids was monitored by using deuterium-labeled [(2)H(35)]-MSG as a selective probe for (2)H NMR and DCP for (31)P NMR. Both (2)H and (31)P NMR spectra exhibit characteristic features representative of different phases. In the lamellar phases, (31)P NMR spectra of DCP are different from the spectra of natural phospholipids, which is attributable to differences in the intramolecular motions and the orientation of the shielding tensor of DCP compared with phospholipids. The presence of the negatively charged amphiphile DCP has a large effect on the phase behavior of [(2)H(35)]-MSG. At low temperature, the presence of DCP inhibits crystallization of the gel phase into the coagel. Upon increasing the temperature, the gel phase of [(2)H(35)]-MSG transforms in the liquid-crystalline lamellar phase. In the presence of DCP, the gel phase directly transforms into an isotropic phase. The negatively charged beta-lactoglobulin and the positively charged lysozyme completely neutralize the destabilizing effect of DCP on the monoglyceride liquid-crystalline phase and they even stabilize this phase. Without DCP the proteins do not seem to interact with the monoglyceride. These results suggest that interaction is facilitated by electrostatic interactions between the negatively charged DCP and positively charged residues in the proteins. In addition, the nonbilayer-forming DCP creates insertion sites for proteins in the bilayer.


Subject(s)
Glycerides/chemistry , Organophosphates/chemistry , Animals , Cattle , Glycerol/chemistry , Lactoglobulins/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Muramidase/chemistry , Protein Binding , Protein Conformation , Temperature , Thermodynamics
18.
Biochim Biophys Acta ; 1510(1-2): 307-20, 2001 Feb 09.
Article in English | MEDLINE | ID: mdl-11342168

ABSTRACT

Fructans are polysaccharides consisting of one glucose unit and two or more fructose units. It was hypothesized that fructans play a role in drought tolerance in plants by interacting directly with the membrane. In this paper we investigated this hypothesis by studying fructan-membrane interactions in hydrated mono- and bilayer systems. It was found that fructans inserted between the headgroups of different kinds of phospholipids with some preference for phosphatidylethanolamine. Insertion occurred even under conditions of very tight lipid packing. The presence of a surface associated layer of fructan was observed in both model systems. This layer was able to reduce the ability of a surface-active protein to interact with the lipids. Fructans showed a much stronger effect on the different lipid systems than other (poly)saccharides, which appears to be related to their hydrophobic properties. Fructans were able to stabilize the liquid-crystalline lamellar phase, which is consistent with a drought protecting role in plants.


Subject(s)
Fructans/chemistry , Membranes/chemistry , Phospholipids/chemistry , Calorimetry, Differential Scanning , Dextrans/chemistry , Magnetic Resonance Spectroscopy , Membrane Lipids/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Surface Properties
19.
Biochim Biophys Acta ; 1510(1-2): 401-13, 2001 Feb 09.
Article in English | MEDLINE | ID: mdl-11342175

ABSTRACT

This study aims at gaining insight into the specificity and molecular mechanism of monoglyceride-protein interactions. We used beta-lactoglobulin (beta-LG) and lysozyme as model proteins and both monostearoylglycerol and monopalmitoylglycerol as defined gel phase monoglycerides. The monoglycerides were used in different combinations with the two negatively charged amphiphiles dicetylphosphate and distearylphosphate. The interactions were characterized using the monolayer technique, isothermal titration calorimetry, (2)H-nuclear magnetic resonance (NMR) using deuterium labelled monoglycerides and freeze fracture electron microscopy (EM). Our results show that lysozyme inserts efficiently into all monolayers tested, including pure monoglyceride layers. The insertion of beta-LG depends on the lipid composition of the monolayer and is promoted when the acylchains of the negatively charged amphiphile are shorter than that of the monoglyceride. The binding parameters found for the interaction of beta-LG and lysozyme with monoglyceride bilayers were generally similar. Moreover, in all cases a large exothermic binding enthalpy was observed which was found to depend on the nature of the monoglycerides but not of the proteins. (2)H-NMR and freeze fracture EM showed that this large enthalpy results from a protein mediated catalysis of the monoglyceride L(beta) to coagel phase transition. The mechanism of this phase transition consists of two steps, an initial protein mediated vesicle aggregation step which is followed by stacking and probably fusion of the bilayers.


Subject(s)
Glycerides/chemistry , Lactoglobulins/chemistry , Lipid Bilayers/chemistry , Muramidase/chemistry , Proteins/chemistry , Freeze Fracturing , Hydrogen-Ion Concentration , Lactoglobulins/genetics , Magnetic Resonance Spectroscopy , Microscopy, Electron , Models, Chemical , Molecular Conformation , Organophosphates/chemistry , Surface Properties , Temperature , Thermodynamics
20.
Chem Phys Lipids ; 109(1): 15-28, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11163341

ABSTRACT

Deuterium labeled monostearoylglycerols with fully ([2H(35)]-MSG) and selectively ([11-(2)H(2)]-MSG) deuterated chains have been synthesized and used as a probe for 2H NMR. At low temperature monoglyceride-water systems form the coagel or crystalline phase, which transforms with increasing temperature subsequently into the gel, liquid crystalline and cubic phase. The 2H NMR spectra exhibit characteristic features representative of these phases. The gel phase is metastable and gradually transforms into the coagel at temperatures below 40 degrees C. The undercooled cubic phase transforms into the liquid crystalline phase during days. In the liquid crystalline phase, the chain order profile indicates an increase of the chain flexibility towards the methyl group. In the liquid crystalline phase, bilayers spontaneously align in a magnetic field with their normal perpendicular to the field. The results demonstrate that 2H NMR can serve as a convenient tool to study both structure and dynamics of different monoglyceride-water phases.


Subject(s)
Glycerides/chemistry , Water/chemistry , Crystallization , Deuterium , Magnetic Resonance Spectroscopy , Molecular Structure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...