Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540791

ABSTRACT

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells. The maximum cytostatic effect during long-term incubation for five days with HeLa and K562 cells was demonstrated by the propionic esters of the steroids: DHEA 3-propionate and 5-AED 3,17-dipropionate. These compounds stimulated the growth of normal Wi-38 cells by 30-50%, which indicates their cytoprotective properties toward noncancerous cells. The synthesized steroid derivatives exhibited antioxidant activity by reducing the production of reactive oxygen species (ROS) by peripheral blood mononuclear cells from healthy volunteers, as demonstrated in a luminol-stimulated chemiluminescence assay. The highest antioxidant effects were shown for the propionate ester of the steroid DHEA. DHEA 3-propionate inhibited luminol-stimulated chemiluminescence by 73% compared to the control, DHEA, which inhibited it only by 15%. These data show the promise of propionic substituents at 3-C and 17-C in steroid molecules for the creation of immunostimulatory and cytoprotective substances with antioxidant properties.


Subject(s)
Androstenediol , Dehydroepiandrosterone , Humans , Dehydroepiandrosterone/pharmacology , Luminol , Leukocytes, Mononuclear , Healthy Volunteers , K562 Cells , Luminescence , Propionates , Steroids
2.
Phys Chem Chem Phys ; 26(6): 5195-5206, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38261463

ABSTRACT

The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodooethanone) peroxosolvate C13H20I2N2O2·H2O2 (1) and four new crystalline compounds, 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O2·H2O2 (2), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-iodoethanone) peroxosolvate C13H20I2N2O5·0.5H2O2 (3), 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-bromoethanone) peroxosolvate C13H20Br2N2O5·H2O2 (4), and 1,1'-(9-hydroperoxy-9-hydroxy-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane-3,7-diyl)bis(2-chloroethanone) peroxosolvate C13H20Cl2N2O5·H2O2 (5). Compounds 2-5 were synthesized for the first time and their crystal structures were determined by single-crystal X-ray diffractometry (SCXRD). To the best of our knowledge, 3-5 are unprecedented crystalline hydrogen peroxide adducts of organic hydroperoxides (R-OOH). Short intermolecular contacts between halogen and hydroperoxo oxygen atoms were found in 1-3. The halogen bonding of C-I(Br) fragments with dioxygen species in compounds 1-3 as well as in the previously reported cocrystal of diacetone diperoxide with triodotrinitrobenzene (6) was identified through reduced density gradient analysis, Hirshfeld surface analysis, and Bader analysis of crystalline electron density. The interactions were quantified using the electron density topological properties acquired from the periodic DFT calculations and evaluated to lie in the range of 9-19 kJ mol-1. A distinctive spectral feature was revealed for this type of interaction, involving a red shift of the characteristic O-O stretching vibration by about 6 cm-1, which appeared in IR spectra as a narrow low-intensity band in the region 837-872 cm-1.

3.
Dalton Trans ; 52(47): 17861-17872, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37975537

ABSTRACT

A joint structural and spectroscopic study of simple bis-cyclometataled rhodium(III) and iridium(III) complexes with 2-phenylpyridine and aromatic ß-diketones (dibenzoylmethane, benzoylacetone, benzoyltrifluoroacetone, and 2-thenoyltrifluoroacetone) reveals an interplay between the solid-state emission efficiency and crystal packing peculiarities of the complexes. Although the prepared rhodium(III) cyclometalates are isostructural with iridium(III) analogues, different types of π-π interactions are responsible for the aggregation-induced emission (AIE) of the complexes depending on the metal ion. For iridium(III) complexes, pyridyl-pyridyl contacts are essential for AIE because they lower the energy of the emissive metal-to-ligand charge transfer state below that of the non-emissive state located at the ancillary ligand. Enabled by phenyl-pyridyl interactions partially blocking the population of non-emissive d-d states, solid-state phosphorescence enhancement is successfully achieved in a rhodium(III) complex with ancillary benzoyltrifluoroacetone, which is the first example of a rhodium complex exhibiting AIE.

4.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686386

ABSTRACT

The aim of this work was to understand the main structural features and ways of formation of Ge-O bonds in organogermanium compounds under the conditions of ArnGeHal4-n (Hal = halide) hydrolysis. The structural types of these compounds were considered, providing 11 blocks (A-K). The molecular structures of the novel compounds [(p-FC6H4)3Ge]2O (1), [(p-F3CC6H4)3Ge]2O (2), and cyclo-[(p-F3CC6H4)2GeO]4 (3) were studied through XRD (X-ray diffraction) analysis. The molecular structure of [(p-F3CC6H4)3GeO]4Ge (4), representing a novel structural type, was also investigated. The data presented in this study will be important in the design of materials with useful properties based on group 14 element derivatives with element-oxygen bonding.


Subject(s)
Oxygen , Crystallography, X-Ray , Hydrolysis
5.
Inorg Chem ; 62(25): 9912-9923, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37311066

ABSTRACT

Despite growing interest in the potential applications of p-block hydroperoxo complexes, the chemistry of inorganic hydroperoxides remains largely unexplored. For instance, single-crystal structures of antimony hydroperoxo complexes have not been reported to date. Herein, we present the synthesis of six triaryl and trialkylantimony dihydroperoxides [Me3Sb(OOH)2, Me3Sb(OOH)2·H2O, Ph3Sb(OOH)2·0.75(C4H8O), Ph3Sb(OOH)2·2CH3OH, pTol3Sb(OOH)2, pTol3Sb(OOH)2·2(C4H8O)], obtained by the reaction of the corresponding dibromide antimony(V) complexes with an excess of highly concentrated hydrogen peroxide in the presence of ammonia. The obtained compounds were characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared and Raman spectroscopies, and thermal analysis. The crystal structures of all six compounds reveal hydrogen-bonded networks formed by hydroperoxo ligands. In addition to the previously reported double hydrogen bonding, new types of hydrogen-bonded motifs formed by hydroperoxo ligands were found, including infinite hydroperoxo chains. Solid-state density functional theory calculation of Me3Sb(OOH)2 revealed reasonably strong hydrogen bonding between OOH ligands with an energy of 35 kJ/mol. Additionally, the potential application of Ph3Sb(OOH)2·0.75(C4H8O) as a two-electron oxidant for the enantioselective epoxidation of olefins was investigated in comparison with Ph3SiOOH, Ph3PbOOH, t-BuOOH, and H2O2.

6.
Pharmaceutics ; 15(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376195

ABSTRACT

Polymorphism is a common phenomenon among single- and multicomponent molecular crystals that has a significant impact on the contemporary drug development process. A new polymorphic form of the drug carbamazepine (CBZ) cocrystal with methylparaben (MePRB) in a 1:1 molar ratio as well as the drug's channel-like cocrystal containing highly disordered coformer molecules have been obtained and characterized in this work using various analytical methods, including thermal analysis, Raman spectroscopy, and single-crystal and high-resolution synchrotron powder X-ray diffraction. Structural analysis of the solid forms revealed a close resemblance between novel form II and previously reported form I of the [CBZ + MePRB] (1:1) cocrystal in terms of hydrogen bond networks and overall packing arrangements. The channel-like cocrystal was found to belong to a distinct family of isostructural CBZ cocrystals with coformers of similar size and shape. Form I and form II of the 1:1 cocrystal appeared to be related by a monotropic relationship, with form II being proven to be the thermodynamically more stable phase. The dissolution performance of both polymorphs in aqueous media was significantly enhanced when compared with parent CBZ. However, considering the superior thermodynamic stability and consistent dissolution profile, the discovered form II of the [CBZ + MePRB] (1:1) cocrystal seems a more promising and reliable solid form for further pharmaceutical development.

7.
Pharmaceutics ; 15(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36986697

ABSTRACT

In this study, the existing set of carbamazepine (CBZ) cocrystals was extended through the successful combination of the drug with the positional isomers of acetamidobenzoic acid. The structural and energetic features of the CBZ cocrystals with 3- and 4-acetamidobenzoic acids were elucidated via single-crystal X-ray diffraction followed by QTAIMC analysis. The ability of three fundamentally different virtual screening methods to predict the correct cocrystallization outcome for CBZ was assessed based on the new experimental results obtained in this study and data available in the literature. It was found that the hydrogen bond propensity model performed the worst in distinguishing positive and negative results of CBZ cocrystallization experiments with 87 coformers, attaining an accuracy value lower than random guessing. The method that utilizes molecular electrostatic potential maps and the machine learning approach named CCGNet exhibited comparable results in terms of prediction metrics, albeit the latter resulted in superior specificity and overall accuracy while requiring no time-consuming DFT computations. In addition, formation thermodynamic parameters for the newly obtained CBZ cocrystals with 3- and 4-acetamidobenzoic acids were evaluated using temperature dependences of the cocrystallization Gibbs energy. The cocrystallization reactions between CBZ and the selected coformers were found to be enthalpy-driven, with entropy terms being statistically different from zero. The observed difference in dissolution behavior of the cocrystals in aqueous media was thought to be caused by variations in their thermodynamic stability.

8.
Pharmaceutics ; 15(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986739

ABSTRACT

Intermolecular interactions, in particular hydrogen bonds, play a key role in crystal engineering. The ability to form hydrogen bonds of various types and strengths causes competition between supramolecular synthons in pharmaceutical multicomponent crystals. In this work, we investigate the influence of positional isomerism on the packing arrangements and the network of hydrogen bonds in multicomponent crystals of the drug riluzole with hydroxyl derivatives of salicylic acid. The supramolecular organization of the riluzole salt containing 2,6-dihydroxybenzoic acid differs from that of the solid forms with 2,4- and 2,5-dihydroxybenzoic acids. Because the second OH group is not at position 6 in the latter crystals, intermolecular charge-assisted hydrogen bonds are formed. According to periodic DFT calculations, the enthalpy of these H-bonds exceeds 30 kJ·mol-1. The positional isomerism appears to have little effect on the enthalpy of the primary supramolecular synthon (65-70 kJ·mol-1), but it does result in the formation of a two-dimensional network of hydrogen bonds and an increase in the overall lattice energy. According to the results of the present study, 2,6-dihydroxybenzoic acid can be treated as a promising counterion for the design of pharmaceutical multicomponent crystals.

9.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770928

ABSTRACT

A highly efficient one-step approach to the macromonomer synthesis using modified aluminum complexes as catalysts of ring-opening polymerization (ROP) of ε-caprolactone and D,L-lactide was developed. The syntheses, structures, and catalytic activities of a wide range of aluminum salen complexes, 3a-c, functionalized with unsaturated alcohol (HO(CH2)4OCH=CH2) are reported. X-Ray diffraction studies revealed a tetragonal pyramidal structure for 3c. Among the complexes 3a-c, the highest activity in bulk ROP of ε-caprolactone and D,L-lactide was displayed by 3b, affording polyesters with controlled molecular weights at low monomer to initiator ratios (Mn up to 15,000 g mol-1), relatively high polydispersities (Ð~1.8) and high number-average functionalities (Fn up to 85%).

10.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555296

ABSTRACT

We report herein the synthesis and full characterizations of the first examples of gallium complexes based on "privileged" aminobisphenolate ligands which are easily available. These complexes turned out to be extremely active in the ring-opening polymerization of ε-caprolactone even at room temperature and highly active in the ROP of L-lactide. The combination of factors such as the easy availability of these compounds and the supposedly low toxicity, together with the extremely high activity in ROP, allows us to consider these compounds as suitable for use on an industrial scale for the synthesis of biodegradable polymers for biomedical applications.


Subject(s)
Gallium , Ligands , Polymerization , Polymers
11.
Molecules ; 27(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558123

ABSTRACT

The crystallization of the poorly soluble drug nitrofurantoin (NFT) with 4-aminopyridine (4AmPy) resulted in three multicomponent solid forms with different hydration levels: anhydrous salt [NFT+4AmPy] (1:1), salt monohydrate [NFT+4AmPy+H2O] (1:1:1), and salt tetrahydrate [NFT+4AmPy+H2O] (1:1:4). Each salt was selectively prepared by liquid-assisted grinding in the presence of acetonitrile or ethanol/water mixture at a specific composition. The NFT hydrated salts were characterized using single crystal X-ray diffraction. The [NFT+4AmPy+H2O] salt (1:1:1) crystallized as an isolated site hydrate, while the [NFT+4AmPy+H2O] salt (1:1:4) crystallized as a channel hydrate. The dehydration processes of the NFT salt hydrates were investigated using differential scanning calorimetry and thermogravimetric analysis. A powder dissolution experiment was carried out for all NFT multicomponent solid forms in pH 7.4 phosphate buffer solution at 37 °C.


Subject(s)
Nitrofurantoin , Sodium Chloride , X-Ray Diffraction , Drug Stability , Crystallography, X-Ray , Water/chemistry , Calorimetry, Differential Scanning , Solubility
12.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431825

ABSTRACT

A series of potassium salts of di- and tri-arylsubstituted cyclopentadienes has been obtained by the metalation of the corresponding cyclopentadienes with benzylpotassium in THF media. Crystals of all compounds, afforded by recrystallization from THF/hexane, diglyme-THF/hexane and toluene/hexane mixtures, have been studied by X-ray diffraction. All studied potassium cyclopentadienides exhibit the luminescence at room temperature and overall quantum yield of photoluminescence for potassium salt of diarylsubstituted cyclopentadiene is 18%.

13.
Pharmaceutics ; 14(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145629

ABSTRACT

Formation thermodynamic parameters for three cocrystals of carbamazepine (CBZ) with structurally related coformers (benzamide (BZA), para-hydroxybenzamide (4-OH-BZA) and isonicotinamide (INAM)) were determined by experimental (cocrystal solubility and competitive reaction methods) and computational techniques. The experimental solubility values of cocrystal components at eutectic points and solubility product of cocrystals [CBZ + BZA], [CBZ + 4-OH-BZA], and [CBZ + INAM] in acetonitrile at 293.15 K, 298.15 K, 303.15 K, 308.15 K, and 313.15 K were measured. All the thermodynamic functions (Gibbs free energy, enthalpy, and entropy) of cocrystals formation were evaluated from the experimental data. The crystal structure of [CBZ + BZA] (1:1) cocrystal was solved and analyzed by the single crystal X-ray diffractometry. A correlation between the solubility products and pure coformers solubility values has been found for CBZ cocrystals. The relationship between the entropy term and the molecular volume of the cocrystal formation has been revealed. The effectiveness of the estimation of the cocrystal formation thermodynamic parameters, based on the knowledge of the melting temperatures of active pharmaceutical ingredients, coformers, cocrystals, as well as the sublimation Gibbs energies and enthalpies of the individual components, was proven. A new method for the comparative assessment of the cocrystal stability based on the H-bond propensity analysis was proposed. The experimental and theoretical results on the thermodynamic parameters of the cocrystal formation were shown to be in good agreement. According to the thermodynamic stability, the studied cocrystals can be arranged in the following order: [CBZ + 4-OH-BZA] > [CBZ + BZA] > [CBZ + INAM].

14.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807323

ABSTRACT

Energy/enthalpy of intermolecular hydrogen bonds (H-bonds) in crystals have been calculated in many papers. Most of the theoretical works used non-periodic models. Their applicability for describing intermolecular H-bonds in solids is not obvious since the crystal environment can strongly change H-bond geometry and energy in comparison with non-periodic models. Periodic DFT computations provide a reasonable description of a number of relevant properties of molecular crystals. However, these methods are quite cumbersome and time-consuming compared to non-periodic calculations. Here, we present a fast quantum approach for estimating the energy/enthalpy of intermolecular H-bonds in crystals. It has been tested on a family of crystalline peroxosolvates in which the H∙∙∙O bond set fills evenly (i.e., without significant gaps) the range of H∙∙∙O distances from ~1.5 to ~2.1 Štypical for strong, moderate, and weak H-bonds. Four of these two-component crystals (peroxosolvates of macrocyclic ethers and creatine) were obtained and structurally characterized for the first time. A critical comparison of the approaches for estimating the energy of intermolecular H-bonds in organic crystals is carried out, and various sources of errors are clarified.


Subject(s)
Hydrogen Bonding , Thermodynamics
15.
Molecules ; 27(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630677

ABSTRACT

Though 2-arylperimidines have never been used in iridium(III) chemistry, the present study on structural, electronic and optical properties of N-unsubstituted and N-methylated 2-(2-thienyl)perimidines, supported by DFT/TDDFT calculations, has shown that these ligands are promising candidates for construction of light-harvesting iridium(III) complexes. In contrast to N-H perimidine, the N-methylated ligand gave the expected cyclometalated µ-chloro-bridged iridium(III) dimer which was readily converted to a cationic heteroleptic complex with 4,4'-dicarboxy-2,2'-bipyridine. The resulting iridium(III) dye exhibited panchromatic absorption up to 1000 nm and was tested in a dye-sensitized solar cell.

16.
Inorg Chem ; 61(21): 8193-8205, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35578736

ABSTRACT

The synthesis, transformation, and application in catalysis of triphenyllead hydroperoxide, the first dioxygen lead complex, are described. Triphenyllead hydroperoxide is characterized by 207Pb nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and single-crystal X-ray diffraction, revealing the first one-dimensional (1D) coordination peroxo polymer. Photolytic isomorphous transformation of Ph3PbOOH yields a mixed hydroxo/superoxo crystalline structure, the first nonalkali superoxo crystalline metal salt, which is stable up to 100 °C. Upon further photolysis, another isomorphous transformation of the superoxide to hydroxide is observed. These are the first single-crystal-to-single-crystal hydroperoxide-to-superoxide and then to hydroxide transformations reported to date. Photolysis of triphenyllead hydroperoxide yields two forms of superoxide-doped crystalline structures that are distinguished by widely different characteristic relaxation times. The use of Ph3PbOOH as an easy-to-handle solid two-electron oxidant for the highly enantioselective epoxidation of olefins is described.

17.
Molecules ; 27(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408545

ABSTRACT

Derivatives of main group elements containing element-element bonds are characterized by unique properties due to σ-conjugation, which is an attractive subject for investigation. A novel series of digermanes, Ar3Ge-Ge(SiMe3)3, containing aryl (Ar = p-C6H4Me (1), p-C6H4F (2), C6F5 (3)) and trimethylsilyl substituents, was synthesized by the reaction of germyl potassium salt, [(Me3Si)3GeK*THF], with triarylchlorogermanes, Ar3GeCl. The optical and electronic properties of such substituted oligoorganogermanes were investigated spectroscopically by UV/vis absorption spectroscopy and theoretically by DFT calculations. The molecular structures of compounds 1 and 2 were studied by XRD analysis. Conjugation between all structural fragments (Ge-Ge, Ge-Si, Ge-Ar, where Ar is an electron-donating or withdrawing group) was found to affect the properties.

18.
Molecules ; 27(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163982

ABSTRACT

Two new peroxosolvates of drug-like compounds were synthesized and studied by a combination of X-ray crystallographic, Raman spectroscopic methods, and periodic DFT computations. The enthalpies of H-bonds formed by hydrogen peroxide (H2O2) as a donor and an acceptor of protons were compared with the enthalpies of analogous H-bonds formed by water (H2O) in isomorphic (isostructural) hydrates. The enthalpies of H-bonds formed by H2O2 as a proton donor turned out to be higher than the values of the corresponding H-bonds formed by H2O. In the case of H2O2 as a proton acceptor in H-bonds, the ratio appeared reversed. The neutral O∙∙∙H-O/O∙∙∙H-N bonds formed by the lone electron pair of the oxygen atom of water were the strongest H-bonds in the considered crystals. In the paper, it was found out that the low-frequency Raman spectra of isomorphous crystalline hydrate and peroxosolvate of N-(5-Nitro-2-furfurylidene)-1-aminohydantoin are similar. As for the isostructural hydrate and peroxosolvate of the salt of protonated 2-amino-nicotinic acid and maleic acid monoanion, the Raman spectra are different.

19.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056748

ABSTRACT

In this work, the solution conformations of seventeen 3,7-diacyl bispidines were studied by means of NMR spectroscopy including VT NMR experiments. The acyl groups included alkyl, alkenyl, aryl, hetaryl, and ferrocene moieties. The presence of syn/anti-isomers and their ratios were estimated, and some reasons explaining experimental facts were formulated. In particular, all aliphatic and heterocyclic units in the acylic R(CO) fragments led to an increased content of the syn-form in DMSO-d6 solutions. In contrast, only the anti-form was detected in DMSO-d6 and CDCl3 in the case when R = Ph, ferrocenyl, (R)-myrtenyl. In the case of a chiral compound derived from the natural terpene myrtene, a new dynamic process was found in addition to the expected inversion around the amide N-C(O) bond. Here, rotation around the CO-C=C bond in the acylic R fragment was detected, and its energy was estimated. For this compound, ΔG for amide N-C(O) inversion was found to be equal to 15.0 ± 0.2 kcal/mol, and for the rotation around the N(CO)-C2' bond, it was equal to 15.6 ± 0.3 kcal/mol. NMR analysis of the chiral bispidine-based bis-amide was conducted for the first time. Two X-ray structures are reported. For the first time, the unique syn-form was found in the crystal of an acyclic bispidine-based bis-amide. Quantum chemical calculations revealed the unexpected mechanism for amide bond inversion. It was found that the reaction does not proceed as direct N-C(O) bond inversion in the double-chair (CC) conformation but rather requires the conformational transformation into the chair-boat (CB) form first. The amide bond inversion in the latter requires less energy than in the CC form.

20.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198944

ABSTRACT

Single crystal of furazolidone (FZL) has been successfully obtained, and its crystal structure has been determined. Common and distinctive features of furazolidone and nitrofurantoin (NFT) crystal packing have been discussed. Combined use of QTAIMC and Hirshfeld surface analysis allowed characterizing the non-covalent interactions in both crystals. Thermophysical characteristics and decomposition of NFT and FZL have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and mass-spectrometry. The saturated vapor pressures of the compounds have been measured using the transpiration method, and the standard thermodynamic functions of sublimation were calculated. It was revealed that the sublimation enthalpy and Gibbs energy of NFT are both higher than those for FZL, but a gain in the crystal lattice energy of NFT is leveled by an entropy increase. The solubility processes of the studied compounds in buffer solutions with pH 2.0, 7.4 and in 1-octanol was investigated at four temperatures from 298.15 to 313.15 K by the saturation shake-flask method. The thermodynamic functions of the dissolution and solvation processes of the studied compounds have been calculated based on the experimental data. Due to the fact that NFT is unstable in buffer solutions and undergoes a solution-mediated transformation from an anhydrate form to monohydrate in the solid state, the thermophysical characteristics and dissolution thermodynamics of the monohydrate were also investigated. It was demonstrated that a combination of experimental and theoretical methods allows performing an in-depth study of the relationships between the molecular and crystal structure and pharmaceutically relevant properties of nitrofuran antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , Furazolidone/chemistry , Nitrofurantoin/chemistry , Anti-Bacterial Agents/pharmacokinetics , Calorimetry, Differential Scanning , Crystallography, X-Ray , Density Functional Theory , Furazolidone/pharmacokinetics , Mass Spectrometry , Molecular Structure , Nitrofurantoin/pharmacokinetics , Solubility , Thermodynamics , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...