Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Neurol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717612

ABSTRACT

OBJECTIVES: To investigate whether a history of traumatic brain injury (TBI) is associated with greater long-term grey-matter loss in patients with mild cognitive impairment (MCI). METHODS: 85 patients with MCI were identified, including 26 with a previous history of traumatic brain injury (MCI[TBI-]) and 59 without (MCI[TBI+]). Cortical thickness was evaluated by segmenting T1-weighted MRI scans acquired longitudinally over a 2-year period. Bayesian multilevel modelling was used to evaluate group differences in baseline cortical thickness and longitudinal change, as well as group differences in neuropsychological measures of executive function. RESULTS: At baseline, the MCI[TBI+] group had less grey matter within right entorhinal, left medial orbitofrontal and inferior temporal cortex areas bilaterally. Longitudinally, the MCI[TBI+] group also exhibited greater longitudinal declines in left rostral middle frontal, the left caudal middle frontal and left lateral orbitofrontal areas sover the span of 2 years (median = 1-2%, 90%HDI [-0.01%: -0.001%], probability of direction (PD) = 90-99%). The MCI[TBI+] group also displayed greater longitudinal declines in Trail-Making-Test (TMT)-derived ratio (median: 0.737%, 90%HDI: [0.229%: 1.31%], PD = 98.8%) and differences scores (median: 20.6%, 90%HDI: [-5.17%: 43.2%], PD = 91.7%). CONCLUSIONS: Our findings support the notion that patients with MCI and a history of TBI are at risk of accelerated neurodegeneration, displaying greatest evidence for cortical atrophy within the left middle frontal and lateral orbitofrontal frontal cortex. Importantly, these results suggest that long-term TBI-mediated atrophy is more pronounced in areas vulnerable to TBI-related mechanical injury, highlighting their potential relevance for diagnostic forms of intervention in TBI.

2.
Front Aging Neurosci ; 16: 1369179, 2024.
Article in English | MEDLINE | ID: mdl-38706457

ABSTRACT

Background: Driving is the preferred mode of transportation for adults across the healthy age span. However, motor vehicle crashes are among the leading causes of injury and death, especially for older adults, and under distracted driving conditions. Understanding the neuroanatomical basis of driving may inform interventions that minimize crashes. This exploratory study examined the neuroanatomical correlates of undistracted and distracted simulated straight driving. Methods: One-hundred-and-thirty-eight participants (40.6% female) aged 17-85 years old (mean and SD = 58.1 ± 19.9 years) performed a simulated driving task involving straight driving and turns at intersections in a city environment using a steering wheel and foot pedals. During some straight driving segments, participants responded to auditory questions to simulate distracted driving. Anatomical T1-weighted MRI was used to quantify grey matter volume and cortical thickness for five brain regions: the middle frontal gyrus (MFG), precentral gyrus (PG), superior temporal cortex (STC), posterior parietal cortex (PPC), and cerebellum. Partial correlations controlling for age and sex were used to explore relationships between neuroanatomical measures and straight driving behavior, including speed, acceleration, lane position, heading angle, and time speeding or off-center. Effects of interest were noted at an unadjusted p-value threshold of 0.05. Results: Distracted driving was associated with changes in most measures of straight driving performance. Greater volume and cortical thickness in the PPC and cerebellum were associated with reduced variability in lane position and heading angle during distracted straight driving. Cortical thickness of the MFG, PG, PPC, and STC were associated with speed and acceleration, often in an age-dependent manner. Conclusion: Posterior regions were correlated with lane maintenance whereas anterior and posterior regions were correlated with speed and acceleration, especially during distracted driving. The regions involved and their role in straight driving may change with age, particularly during distracted driving as observed in older adults. Further studies should investigate the relationship between distracted driving and the aging brain to inform driving interventions.

3.
Behav Brain Res ; 469: 115045, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734034

ABSTRACT

Post-acute COVID syndrome (PACS) is a global health concern and is often associated with debilitating symptoms. Post-COVID fatigue is a particularly frequent and troubling issue, and its underlying mechanisms remain incompletely understood. One potential contributor is micropathological injury of subcortical and brainstem structures, as has been identified in other patient populations. Texture-based analysis (TA) may be used to measure such changes in anatomical MRI data. The present study develops a methodology of voxel-wise TA mapping in subcortical and brainstem regions, which is then applied to T1-weighted MRI data from a cohort of 48 individuals who had PACS (32 with and 16 without ongoing fatigue symptoms) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19. Both groups were assessed an average of 4-5 months post-infection. There were no significant differences between PACS and control groups, but significant differences were observed within the PACS groups, between those with and without fatigue symptoms. This included reduced texture energy and increased entropy, along with reduced texture correlation, cluster shade and profile in the putamen, pallidum, thalamus and brainstem. These findings provide new insights into the neurophysiological mechanisms that underlie PACS, with altered tissue texture as a potential biomarker of this debilitating condition.

4.
Int J Geriatr Psychiatry ; 39(3): e6074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491809

ABSTRACT

OBJECTIVES: Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS: The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS: Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS: The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Cognitive Dysfunction , Parkinson Disease , Humans , Cross-Sectional Studies , Parkinson Disease/psychology , Longitudinal Studies , Cognitive Dysfunction/psychology , Alzheimer Disease/psychology , Brain/diagnostic imaging , Brain/pathology , Cerebrovascular Disorders/complications , Neuropsychological Tests
5.
Alzheimer Dis Assoc Disord ; 38(1): 14-21, 2024.
Article in English | MEDLINE | ID: mdl-38285961

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) is associated with an accelerated course of dementia, although biological relationships are incompletely understood. METHODS: The study examined 1124 participants, including 343 with Alzheimer disease (AD), 127 with AD with TBI, 266 cognitively normal adults with TBI, and 388 cognitively normal adults without TBI. Cortical thickness was quantified from T1-weighted magnetic resonance imaging data. Multiple linear regression was used to determine the interaction between AD and TBI on cortical thickness. RESULTS: Among those with AD, TBI was associated with an earlier age of AD onset but, counterintuitively, less cortical thinning in frontotemporal regions relative to non-AD controls. DISCUSSION: AD with TBI represents a distinct group from AD, likely with distinct pathologic contributions beyond gray matter loss. This finding has important implications for the diagnosis and treatment of AD in the presence of TBI and indicates that models of AD, aging, and neural loss should account for TBI history.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Humans , Alzheimer Disease/diagnosis , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Aging/pathology , Magnetic Resonance Imaging/methods
6.
Brain Behav ; 13(11): e3212, 2023 11.
Article in English | MEDLINE | ID: mdl-37872889

ABSTRACT

INTRODUCTION: Post-acute coronavirus disease 2019 (COVID-19) syndrome (PACS) is a growing concern, with headache being a particularly debilitating symptom with high prevalence. The long-term effects of COVID-19 and post-COVID headache on brain function remain poorly understood, particularly among non-hospitalized individuals. This study focused on the power-law scaling behavior of functional brain dynamics, indexed by the Hurst exponent (H). This measure is suppressed during physiological and psychological distress and was thus hypothesized to be reduced in individuals with post-COVID syndrome, with greatest reductions among those with persistent headache. METHODS: Resting-state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging data were collected for 57 individuals who had COVID-19 (32 with no headache, 14 with ongoing headache, 11 recovered) and 17 controls who had cold and flu-like symptoms but  tested negative for COVID-19. Individuals were assessed an average of 4-5 months after COVID testing, in a cross-sectional, observational study design. RESULTS: No significant differences in H values were found between non-headache COVID-19 and control groups., while those with ongoing headache had significantly reduced H values, and those who had recovered from headache had elevated H values, relative to non-headache groups. Effects were greatest in temporal, sensorimotor, and insular brain regions. Reduced H in these regions was also associated with decreased BOLD activity and local functional connectivity. CONCLUSIONS: These findings provide new insights into the neurophysiological mechanisms that underlie persistent post-COVID headache, with reduced BOLD scaling as a potential biomarker that is specific to this debilitating condition.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , COVID-19/complications , Brain/physiology , Headache/diagnostic imaging , Headache/etiology
7.
Hum Brain Mapp ; 44(10): 3998-4010, 2023 07.
Article in English | MEDLINE | ID: mdl-37162380

ABSTRACT

There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.


Subject(s)
COVID-19 , White Matter , COVID-19/diagnostic imaging , COVID-19/pathology , Diffusion Tensor Imaging , Feasibility Studies , White Matter/diagnostic imaging , White Matter/ultrastructure , Frontal Lobe/diagnostic imaging , Frontal Lobe/ultrastructure , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged
8.
Front Neurol ; 14: 1136408, 2023.
Article in English | MEDLINE | ID: mdl-37051059

ABSTRACT

Introduction: The long-term impact of COVID-19 on brain function remains poorly understood, despite growing concern surrounding post-acute COVID-19 syndrome (PACS). The goal of this cross-sectional, observational study was to determine whether there are significant alterations in resting brain function among non-hospitalized individuals with PACS, compared to symptomatic individuals with non-COVID infection. Methods: Data were collected for 51 individuals who tested positive for COVID-19 (mean age 41±12 yrs., 34 female) and 15 controls who had cold and flu-like symptoms but tested negative for COVID-19 (mean age 41±14 yrs., 9 female), with both groups assessed an average of 4-5 months after COVID testing. None of the participants had prior neurologic, psychiatric, or cardiovascular illness. Resting brain function was assessed via functional magnetic resonance imaging (fMRI), and self-reported symptoms were recorded. Results: Individuals with COVID-19 had lower temporal and subcortical functional connectivity relative to controls. A greater number of ongoing post-COVID symptoms was also associated with altered functional connectivity between temporal, parietal, occipital and subcortical regions. Discussion: These results provide preliminary evidence that patterns of functional connectivity distinguish PACS from non-COVID infection and correlate with the severity of clinical outcome, providing novel insights into this highly prevalent disorder.

9.
J Affect Disord ; 330: 139-147, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36878406

ABSTRACT

BACKGROUND: Suicidal ideation is highly prevalent in Major Depressive Disorder (MDD). However, the factors determining who will transition from ideation to attempt are not established. Emerging research points to suicide capability (SC), which reflects fearlessness of death and increased pain tolerance, as a construct mediating this transition. This Canadian Biomarker Integration Network in Depression study (CANBIND-5) aimed to identify the neural basis of SC and its interaction with pain as a marker of suicide attempt. METHODS: MDD patients (n = 20) with suicide risk and healthy controls (n = 21) completed a self-report SC scale and a cold pressor task measuring pain threshold, tolerance, endurance, and intensity at threshold and tolerance. All participants underwent a resting-state brain scan and functional connectivity was examined for 4 regions: anterior insula (aIC), posterior insula (pIC), anterior mid-cingulate cortex (aMCC) and subgenual anterior cingulate cortex (sgACC). RESULTS: In MDD, SC correlated positively with pain endurance and negatively with threshold intensity. Furthermore, SC correlated with the connectivity of aIC to the supramarginal gyrus, pIC to the paracingulate gyrus, aMCC to the paracingulate gyrus, and sgACC to the dorsolateral prefrontal cortex. These correlations were stronger in MDD compared to controls. Only threshold intensity mediated the correlation between SC and connectivity strength. LIMITATIONS: Resting-state scans provided an indirect assessment of SC and the pain network. CONCLUSIONS: These findings highlight point to a neural network underlying SC that is associated with pain processing. This supports the potential clinical utility of pain response measurement as a method to investigate markers of suicide risk.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Canada , Gyrus Cinguli/diagnostic imaging , Pain/diagnostic imaging
10.
Neuroimaging Clin N Am ; 33(2): 315-324, 2023 May.
Article in English | MEDLINE | ID: mdl-36965948

ABSTRACT

The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.


Subject(s)
Brain Injuries, Traumatic , Humans , Brain Injuries, Traumatic/diagnostic imaging , Cerebrovascular Circulation/physiology , Perfusion Imaging , Magnetic Resonance Imaging , Brain
11.
Brain Inj ; 37(2): 147-158, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36594665

ABSTRACT

OBJECTIVE: To examine the roles of the default mode network (DMN) and executive control network (ECN) in prolonged recovery after mild traumatic brain injury (mTBI), and relationships with indices of white matter microstructural injury. METHODS: Seventeen mTBI patients with persistent symptoms were imaged an average of 21.5 months post-injury, along with 23 healthy controls. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to evaluate functional connectivity (FC) of the DMN and ECN. Diffusion tensor imaging (DTI) quantified fractional anisotropy, along with mean, axial and radial diffusivity of white matter tracts. RESULTS: Compared to controls, patients with mTBI had increased functional connectivity of the DMN and ECN to brain regions implicated in salience and frontoparietal networks, and increased white matter diffusivity within the cerebrum and brainstem. Among the patients, FC was correlated with better neurocognitive test scores, while diffusivity was correlated with more severe self-reported symptoms. The FC and diffusivity values within abnormal brain regions were not significantly correlated. CONCLUSION: For female mTBI patients with prolonged symptoms, hyper-connectivity may represent a compensatory response that helps to mitigate the effects of mTBI on cognition. These effects are unrelated to indices of microstructural injury, which are correlated with symptom severity, suggesting that rs-fMRI and DTI may capture distinct aspects of pathophysiology.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Humans , Female , Post-Concussion Syndrome/diagnostic imaging , Diffusion Tensor Imaging/methods , Executive Function , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
12.
Cerebellum ; 22(1): 26-36, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35023065

ABSTRACT

Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Magnetic Resonance Imaging/methods , Cerebellum/diagnostic imaging , Brain Mapping , Neuroimaging , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging
13.
J Alzheimers Dis ; 90(4): 1571-1588, 2022.
Article in English | MEDLINE | ID: mdl-36314203

ABSTRACT

BACKGROUND: Recent work suggests that APOEɛ4/4 females with Alzheimer's disease (AD) are more susceptible to developing neuropsychiatric symptoms (NPS). OBJECTIVE: To examine the interaction of sex and APOEɛ4 status on NPS burden using two independent cohorts: 1) patients at risk for AD with mild cognitive impairment and/or major depressive disorder (n = 252) and 2) patients with probable AD (n = 7,261). METHODS: Regression models examined the interactive effects of sex and APOEɛ4 on the number of NPS experienced and NPS Severity. APOEɛ3/4 and APOEɛ4/4 were pooled in the at-risk cohort due to the sample size. RESULTS: In the at-risk cohort, there was a significant sex*APOEɛ4 interaction (p = 0.007) such that the association of APOEɛ4 with NPS was greater in females than in males (incident rate ratio (IRR) = 2.0). APOEɛ4/4 females had the most NPS (mean = 1.9) and the highest severity scores (mean = 3.5) of any subgroup. In the clinical cohort, APOEɛ4/4 females had significantly more NPS (IRR = 1.1, p = 0.001, mean = 3.1) and higher severity scores (b = 0.31, p = 0.015, mean = 3.7) than APOEɛ3/3 females (meanNPS = 2.9, meanSeverity = 3.3). No association was found in males. CONCLUSION: Our study suggests that sex modifies the association of APOEɛ4 on NPS burden. APOEɛ4/4 females may be particularly susceptible to increased NPS burden among individuals with AD and among individuals at risk for AD. Further investigation into the mechanisms behind these associations are needed.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Depressive Disorder, Major , Male , Female , Humans , Alzheimer Disease/diagnosis , Depressive Disorder, Major/genetics , Depressive Disorder, Major/complications , Cognitive Dysfunction/diagnosis , Neuropsychological Tests
14.
Brain Sci ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139002

ABSTRACT

BACKGROUND: The APOE4 allele is a genetic risk factor for developing late-onset Alzheimer's disease (AD). Previous work by our group revealed that female APOE4 homozygotes with Lewy body (LB) pathology were more likely to experience psychosis compared to female APOE4 non-carriers, whereas in males there was no APOE4 dose-dependent significant effect. The objective of this study was to refine our previous findings by adjusting for covariates and determining the probability of an APOE4 sex-mediated effect on psychosis. METHODS: Neuropathologically confirmed AD patients with LB pathology (n = 491) and without LB pathology (n = 716) were extracted from the National Alzheimer's Coordinating Center (NACC). Patients were classified as psychotic if they scored positively for delusions and/or hallucinations on the Neuropsychiatric Inventory. Analysis consisted of a preliminary unadjusted binary logistic regression and a Generalized Additive binary logistic regression Model (GAM) to predict the relationship between APOE4 status and sex on the presence of psychosis in both cohorts, adjusting for age, education and MMSE. RESULTS: In the cohort with LB pathology, female APOE4 homozygotes were significantly more likely to experience psychosis compared to female APOE4 non-carriers (OR = 4.15, 95%CI [1.21, 14.2], p = 0.023). Female heterozygotes were also more likely to experience psychosis compared to female APOE4 non-carriers, but to a lesser extent (OR = 2.37, 95%CI [1.01, 5.59], p = 0.048). There was no significant difference in males with LB pathology or in any sex in the cohort without LB pathology. CONCLUSIONS: Sex and zygosity influence the effect of APOE4 on psychosis in neuropathologically confirmed AD patients, with the effect being limited to females with LB pathology.

15.
Brain Sci ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35624987

ABSTRACT

Background: This study examines the relationship between delusional severity in cognitively impaired adults with automatically computed volume and texture biomarkers from the Normal Appearing Brain Matter (NABM) in FLAIR MRI. Methods: Patients with mild cognitive impairment (MCI, n = 24) and Alzheimer's Disease (AD, n = 18) with delusions of varying severities based on Neuropsychiatric Inventory-Questionnaire (NPI-Q) (1­mild, 2­moderate, 3­severe) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed for this task. The NABM region, which is gray matter (GM) and white matter (WM) combined, was automatically segmented in FLAIR MRI volumes with intensity standardization and thresholding. Three imaging biomarkers were computed from this region, including NABM volume and two texture markers called "Integrity" and "Damage". Together, these imaging biomarkers quantify structural changes in brain volume, microstructural integrity and tissue damage. Multivariable regression was used to investigate relationships between imaging biomarkers and delusional severities (1, 2 and 3). Sex, age, education, APOE4 and baseline cerebrospinal fluid (CSF) tau were included as co-variates. Results: Biomarkers were extracted from a total of 42 participants with longitudinal time points representing 164 imaging volumes. Significant associations were found for all three NABM biomarkers between delusion level 3 and level 1. Integrity was also sensitive enough to show differences between delusion level 1 and delusion level 2. A significant specified interaction was noted with severe delusions (level 3) and CSF tau for all imaging biomarkers (p < 0.01). APOE4 homozygotes were also significantly related to the biomarkers. Conclusion: Cognitively impaired older adults with more severe delusions have greater global brain disease burden in the WM and GM combined (NABM) as measured using FLAIR MRI. Relative to patients with mild delusions, tissue degeneration in the NABM was more pronounced in subjects with higher delusional symptoms, with a significant association with CSF tau. Future studies are required to establish potential tau-associated mechanisms of increased delusional severity.

17.
PLoS One ; 16(11): e0253134, 2021.
Article in English | MEDLINE | ID: mdl-34727098

ABSTRACT

Concussion is associated with disrupted cerebral blood flow (CBF), although there appears to be substantial inter-individual variability in CBF response. At present, the mechanisms of variable CBF response remain incompletely understood, but one potential contributor is matrix metalloproteinase (MMP) expression. In more severe forms of acquired brain injury, MMP up-regulation contributes to CBF impairments via increased blood-brain barrier permeability. A similar relationship is hypothesized for concussion, where recently concussed individuals with higher MMP levels have lower CBF. To test this hypothesis, 35 concussed athletes were assessed longitudinally at early symptomatic injury (median: 5 days post-injury) and at medical clearance (median: 24 days post-injury), along with 71 athletic controls. For all athletes, plasma MMPs were measured and arterial spin labelling was used to measure CBF. Consistent with our hypothesis, higher concentrations of MMP-2 and MMP-3 were correlated with lower global CBF. The correlations between MMPs and global CBF were also significantly diminished for concussed athletes at medical clearance and for athletic controls. These results indicate an inverse relationship between plasma MMP levels and CBF that is specific to the symptomatic phase of concussion. Analyses of regional CBF further showed that correlations with MMP levels exhibited some spatial specificity, with greatest effects in occipital, parietal and temporal lobes. These findings provide new insights into the mechanisms of post-concussion cerebrovascular dysfunction.


Subject(s)
Brain Concussion/physiopathology , Brain/blood supply , Cerebrovascular Circulation/physiology , Matrix Metalloproteinases/blood , Adolescent , Brain/diagnostic imaging , Brain Concussion/blood , Brain Concussion/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Spin Labels , Sports , Young Adult
18.
Hum Brain Mapp ; 42(18): 5814-5826, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34643005

ABSTRACT

Concussion is associated with acute disturbances in brain function and behavior, with potential long-term effects on brain health. However, it is presently unclear whether there are sex differences in acute and long-term brain recovery. In this study, magnetic resonance imaging (MRI) was used to scan 61 participants with sport-related concussion (30 male, 31 female) longitudinally at acute injury, medical clearance to return to play (RTP), and 1-year post-RTP. A large cohort of 167 controls (80 male, 87 female) was also imaged. Each MRI session assessed cerebral blood flow (CBF), along with white matter fractional anisotropy (FA) and mean diffusivity (MD). For concussed athletes, the parameters were converted to difference scores relative to matched control subgroups, and partial least squares modeled the main and sex-specific effects of concussion. Although male and female athletes did not differ in acute symptoms or time to RTP , all MRI measures showed significant sex differences during recovery. Males had greater reductions in occipital-parietal CBF (mean difference and 95%CI: 9.97 ml/100 g/min, [4.84, 15.12] ml/100 g/min, z = 3.73) and increases in callosal MD (9.07 × 10-5 , [-14.14, -3.60] × 10-5 , z = -3.46), with greatest effects at 1-year post-RTP. In contrast, females had greater reductions in FA of the corona radiata (16.50 × 10-3 , [-22.38, -11.08] × 10-3 , z = -5.60), with greatest effects at RTP. These findings provide new insights into how the brain recovers after a concussion, showing sex differences in both the acute and chronic phases of injury.


Subject(s)
Athletic Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging , Sex Characteristics , White Matter/diagnostic imaging , Adolescent , Adult , Athletic Injuries/pathology , Athletic Injuries/physiopathology , Brain Concussion/pathology , Brain Concussion/physiopathology , Diffusion Tensor Imaging , Female , Humans , Longitudinal Studies , Male , Recovery of Function/physiology , White Matter/pathology , Young Adult
19.
J Alzheimers Dis ; 84(2): 819-833, 2021.
Article in English | MEDLINE | ID: mdl-34602475

ABSTRACT

BACKGROUND: Repeated exposure to long-known music has been shown to have a beneficial effect on cognitive performance in patients with AD. However, the brain mechanisms underlying improvement in cognitive performance are not yet clear. OBJECTIVE: In this pilot study we propose to examine the effect of repeated long-known music exposure on imaging indices and corresponding changes in cognitive function in patients with early-stage cognitive decline. METHODS: Participants with early-stage cognitive decline were assigned to three weeks of daily long-known music listening, lasting one hour in duration. A cognitive battery was administered, and brain activity was measured before and after intervention. Paired-measures tests evaluated the longitudinal changes in brain structure, function, and cognition associated with the intervention. RESULTS: Fourteen participants completed the music-based intervention, including 6 musicians and 8 non-musicians. Post-baseline there was a reduction in brain activity in key nodes of a music-related network, including the bilateral basal ganglia and right inferior frontal gyrus, and declines in fronto-temporal functional connectivity and radial diffusivity of dorsal white matter. Musician status also significantly modified longitudinal changes in functional and structural brain measures. There was also a significant improvement in the memory subdomain of the Montreal Cognitive Assessment. CONCLUSION: These preliminary results suggest that neuroplastic mechanisms may mediate improvements in cognitive functioning associated with exposure to long-known music listening and that these mechanisms may be different in musicians compared to non-musicians.


Subject(s)
Auditory Perception/physiology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Music/psychology , Aged , Basal Ganglia/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Mental Status and Dementia Tests/statistics & numerical data , Neuronal Plasticity , Pilot Projects , Prefrontal Cortex/diagnostic imaging , White Matter/diagnostic imaging
20.
Front Hum Neurosci ; 15: 659040, 2021.
Article in English | MEDLINE | ID: mdl-34483861

ABSTRACT

INTRODUCTION: Driving motor vehicles is a complex task that depends heavily on how visual stimuli are received and subsequently processed by the brain. The potential impact of distraction on driving performance is well known and poses a safety concern - especially for individuals with cognitive impairments who may be clinically unfit to drive. The present study is the first to combine functional magnetic resonance imaging (fMRI) and eye-tracking during simulated driving with distraction, providing oculomotor metrics to enhance scientific understanding of the brain activity that supports driving performance. MATERIALS AND METHODS: As initial work, twelve healthy young, right-handed participants performed turns ranging in complexity, including simple right and left turns without oncoming traffic, and left turns with oncoming traffic. Distraction was introduced as an auditory task during straight driving, and during left turns with oncoming traffic. Eye-tracking data were recorded during fMRI to characterize fixations, saccades, pupil diameter and blink rate. RESULTS: Brain activation maps for right turns, left turns without oncoming traffic, left turns with oncoming traffic, and the distraction conditions were largely consistent with previous literature reporting the neural correlates of simulated driving. When the effects of distraction were evaluated for left turns with oncoming traffic, increased activation was observed in areas involved in executive function (e.g., middle and inferior frontal gyri) as well as decreased activation in the posterior brain (e.g., middle and superior occipital gyri). Whereas driving performance remained mostly unchanged (e.g., turn speed, time to turn, collisions), the oculomotor measures showed that distraction resulted in more consistent gaze at oncoming traffic in a small area of the visual scene; less time spent gazing at off-road targets (e.g., speedometer, rear-view mirror); more time spent performing saccadic eye movements; and decreased blink rate. CONCLUSION: Oculomotor behavior modulated with driving task complexity and distraction in a manner consistent with the brain activation features revealed by fMRI. The results suggest that eye-tracking technology should be included in future fMRI studies of simulated driving behavior in targeted populations, such as the elderly and individuals with cognitive complaints - ultimately toward developing better technology to assess and enhance fitness to drive.

SELECTION OF CITATIONS
SEARCH DETAIL
...