Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
Diabetes Ther ; 15(5): 1169-1186, 2024 May.
Article in English | MEDLINE | ID: mdl-38536629

ABSTRACT

INTRODUCTION: People with type 2 diabetes are at heightened risk for severe outcomes related to COVID-19 infection, including hospitalization, intensive care unit admission, and mortality. This study was designed to examine the impact of premorbid use of glucagon-like peptide-1 receptor agonist (GLP-1RA) monotherapy, sodium-glucose cotransporter-2 inhibitor (SGLT-2i) monotherapy, and concomitant GLP1-RA/SGLT-2i therapy on the severity of outcomes in individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Utilizing observational data from the National COVID Cohort Collaborative through September 2022, we compared outcomes in 78,806 individuals with a prescription of GLP-1RA and SGLT-2i versus a prescription of dipeptidyl peptidase 4 inhibitors (DPP-4i) within 24 months of a positive SARS-CoV-2 PCR test. We also compared concomitant GLP-1RA/SGLT-2i therapy to GLP-1RA and SGLT-2i monotherapy. The primary outcome was 60-day mortality, measured from the positive test date. Secondary outcomes included emergency room (ER) visits, hospitalization, and mechanical ventilation within 14 days. Using a super learner approach and accounting for baseline characteristics, associations were quantified with odds ratios (OR) estimated with targeted maximum likelihood estimation (TMLE). RESULTS: Use of GLP-1RA (OR 0.64, 95% confidence interval [CI] 0.56-0.72) and SGLT-2i (OR 0.62, 95% CI 0.57-0.68) were associated with lower odds of 60-day mortality compared to DPP-4i use. Additionally, the OR of ER visits and hospitalizations were similarly reduced with GLP1-RA and SGLT-2i use. Concomitant GLP-1RA/SGLT-2i use showed similar odds of 60-day mortality when compared to GLP-1RA or SGLT-2i use alone (OR 0.92, 95% CI 0.81-1.05 and OR 0.88, 95% CI 0.76-1.01, respectively). However, lower OR of all secondary outcomes were associated with concomitant GLP-1RA/SGLT-2i use when compared to SGLT-2i use alone. CONCLUSION: Among adults who tested positive for SARS-CoV-2, premorbid use of either GLP-1RA or SGLT-2i is associated with lower odds of mortality compared to DPP-4i. Furthermore, concomitant use of GLP-1RA and SGLT-2i is linked to lower odds of other severe COVID-19 outcomes, including ER visits, hospitalizations, and mechanical ventilation, compared to SGLT-2i use alone. Graphical abstract available for this article.

2.
medRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38343863

ABSTRACT

Preventing and treating post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, has become a public health priority. In this study, we examined whether treatment with Paxlovid in the acute phase of COVID-19 helps prevent the onset of PASC. We used electronic health records from the National Covid Cohort Collaborative (N3C) to define a cohort of 426,352 patients who had COVID-19 since April 1, 2022, and were eligible for Paxlovid treatment due to risk for progression to severe COVID-19. We used the target trial emulation (TTE) framework to estimate the effect of Paxlovid treatment on PASC incidence. We estimated overall PASC incidence using a computable phenotype. We also measured the onset of novel cognitive, fatigue, and respiratory symptoms in the post-acute period. Paxlovid treatment did not have a significant effect on overall PASC incidence (relative risk [RR] = 0.98, 95% confidence interval [CI] 0.95-1.01). However, it had a protective effect on cognitive (RR = 0.90, 95% CI 0.84-0.96) and fatigue (RR = 0.95, 95% CI 0.91-0.98) symptom clusters, which suggests that the etiology of these symptoms may be more closely related to viral load than that of respiratory symptoms.

3.
JACC Adv ; 3(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38375059

ABSTRACT

Precision prevention embraces personalized prevention but includes broader factors such as social determinants of health to improve cardiovascular health. The quality, quantity, precision, and diversity of data relatable to individuals and communities continue to expand. New analytical methods can be applied to these data to create tools to attribute risk, which may allow a better understanding of cardiovascular health disparities. Interventions using these analytic tools should be evaluated to establish feasibility and efficacy for addressing cardiovascular disease disparities in diverse individuals and communities. Training in these approaches is important to create the next generation of scientists and practitioners in precision prevention. This state-of-the-art review is based on a workshop convened to identify current gaps in knowledge and methods used in precision prevention intervention research, discuss opportunities to expand trials of implementation science to close the health equity gaps, and expand the education and training of a diverse precision prevention workforce.

4.
Open Forum Infect Dis ; 11(2): ofae019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38379569

ABSTRACT

Background: Real-world evidence of coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) booster effectiveness among patients with immune dysfunction are limited. Methods: We included data from patients in the United States National COVID Cohort Collaborative (N3C) who completed ≥2 doses of mRNA vaccination between 10 December 2020 and 27 May 2022. Immune dysfunction conditions included human immunodeficiency virus infection, solid organ or bone marrow transplant, autoimmune diseases, and cancer. We defined incident COVID-19 BTI as positive results from laboratory tests or diagnostic codes 14 days after at least 2 doses of mRNA vaccination; and severe COVID-19 BTI as hospitalization, invasive cardiopulmonary support, and/or death. We used propensity scores to match boosted versus nonboosted patients and evaluated hazards of incident and severe COVID-19 BTI using Cox regression after matching. Results: Among patients without immune dysfunction, the relative effectiveness of booster (3 doses) after 6 months from the primary (2 doses) vaccination against BTI ranged from 69% to 81% during the Delta-predominant period and from 33% to 39% during the Omicron-predominant period. Relative effectiveness against BTI was lower among patients with immune dysfunction but remained statistically significant in both periods. Boosted patients had lower risk of COVID-19-related hospitalization (hazard ratios [HR] ranged from 0.5 [95% confidence interval {CI}, .48-.53] to 0.63 [95% CI, .56-.70]), invasive cardiopulmonary support, or death (HRs ranged from 0.46 [95% CI, .41-.52] to 0.63 [95% CI, .50-.79]) during both periods. Conclusions: Booster vaccines remain effective against severe COVID-19 BTI throughout the Delta- and Omicron-predominant periods, regardless of patients' immune status.

5.
J Thromb Haemost ; 22(1): 61-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37182697

ABSTRACT

BACKGROUND: Hypercoagulable state contributing to thrombotic complications worsens COVID-19 severity and outcomes, whereas anticoagulation improves outcomes by alleviating hypercoagulability. OBJECTIVES: To examine whether hemophilia, an inherent hypocoagulable condition, offers protection against COVID-19 severity and reduces venous thromboembolism (VTE) risk in persons with hemophilia (PwH). METHODS: A 1:3 propensity score-matched retrospective cohort study used national COVID-19 registry data (January 2020 through January 2022) to compare outcomes between 300 male PwH and 900 matched controls without hemophilia. RESULTS: Analyses of PwH demonstrated that known risk factors (older age, heart failure, hypertension, cancer/malignancy, dementia, and renal and liver disease) contributed to severe COVID-19 and/or 30-day all-cause mortality. Non-central nervous system bleeding was an additional risk factor for poor outcomes in PwH. Odds of developing VTE with COVID-19 in PwH were associated with pre-COVID VTE diagnosis (odds ratio [OR], 51.9; 95% CI, 12.8-266; p < .001), anticoagulation therapy (OR, 12.7; 95% CI, 3.01-48.6; p < .001), and pulmonary disease (OR, 16.1; 95% CI, 10.4-25.4; p < .001). Thirty-day all-cause mortality (OR, 1.27; 95% CI, 0.75-2.11; p = .3) and VTE events (OR, 1.32; 95% CI, 0.64-2.73; p = .4) were not significantly different between the matched cohorts; however, hospitalizations (OR, 1.58; 95% CI, 1.20-2.10; p = .001) and non-central nervous system bleeding events (OR, 4.78; 95% CI, 2.98-7.48; p < .001) were increased in PwH. In multivariate analyses, hemophilia did not reduce adverse outcomes (OR, 1.32; 95% CI, 0.74-2.31; p = .2) or VTE (OR, 1.14; 95% CI, 0.44-2.67; p = .8) but increased bleeding risk (OR, 4.70; 95% CI, 2.98-7.48; p < .001). CONCLUSION: After adjusting for patient characteristics/comorbidities, hemophilia increased bleeding risk with COVID-19 but did not protect against severe disease and VTE.


Subject(s)
COVID-19 , Hemophilia A , Venous Thromboembolism , Humans , Male , Anticoagulants/therapeutic use , Venous Thromboembolism/etiology , Hemophilia A/complications , Hemophilia A/diagnosis , Hemophilia A/drug therapy , Retrospective Studies , COVID-19/complications , Hemorrhage/chemically induced , Registries
6.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953324

ABSTRACT

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Subject(s)
Biological Ontologies , Humans , Phenotype , Genomics , Algorithms , Rare Diseases
7.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38000386

ABSTRACT

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Subject(s)
Databases, Factual , Disease , Genes , Phenotype , Humans , Internet , Databases, Factual/standards , Software , Genes/genetics , Disease/genetics
8.
Injury ; 54(12): 111092, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871347

ABSTRACT

BACKGROUND: The objective of this study was to investigate the outcomes of COVID-19-positive patients undergoing orthopaedic fracture surgery using data from a national database of U.S. adults with a COVID-19 test for SARS-CoV-2. METHODS: This is a retrospective cohort study using data from a national database to compare orthopaedic fracture surgery outcomes between COVID-19-positive and COVID-19-negative patients in the United States. Participants aged 18-99 with orthopaedic fracture surgery between March and December 2020 were included. The main exposure was COVID-19 status. Outcomes included perioperative complications, 30-day all-cause mortality, and overall all-cause mortality. Multivariable adjusted models were fitted to determine the association of COVID-positivity with all-cause mortality. RESULTS: The total population of 6.5 million patient records was queried, identifying 76,697 participants with a fracture. There were 7,628 participants in the National COVID Cohort who had a fracture and operative management. The Charlson Comorbidity Index was higher in the COVID-19-positive group (n = 476, 6.2 %) than the COVID-19-negative group (n = 7,152, 93.8 %) (2.2 vs 1.4, p<0.001). The COVID-19-positive group had higher mortality (13.2 % vs 5.2 %, p<0.001) than the COVID-19-negative group with higher odds of death in the fully adjusted model (Odds Ratio=1.59; 95 % Confidence Interval: 1.16-2.18). CONCLUSION: COVID-19-positive participants with a fracture requiring surgery had higher mortality and perioperative complications than COVID-19-negative patients in this national cohort of U.S. adults tested for COVID-19. The risks associated with COVID-19 can guide potential treatment options and counseling of patients and their families. Future studies can be conducted as data accumulates. LEVEL OF EVIDENCE: Level III.


Subject(s)
COVID-19 , Hip Fractures , Orthopedics , Adult , Humans , United States/epidemiology , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Hip Fractures/surgery
9.
BMC Public Health ; 23(1): 2103, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880596

ABSTRACT

BACKGROUND: More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis. METHODS: This was a retrospective case-control study including 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system and COVID index date within ± 45 days of the corresponding case's earliest COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. RESULTS: Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33-1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05-4.73), long (8-30 days, OR 1.69, 95% CI 1.31-2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45-4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18-1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40-1.60), chronic lung disease (OR 1.63, 95% CI 1.53-1.74), and obesity (OR 1.23, 95% CI 1.16-1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. CONCLUSIONS: This national study identified important risk factors for PASC diagnosis such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course.


Subject(s)
COVID-19 , SARS-CoV-2 , Middle Aged , Female , Male , Humans , Adult , Aged , Adolescent , Young Adult , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Case-Control Studies , Retrospective Studies , Risk Factors , Disease Progression
10.
J Am Med Inform Assoc ; 30(12): 2036-2040, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37555837

ABSTRACT

Despite recent methodology advancements in clinical natural language processing (NLP), the adoption of clinical NLP models within the translational research community remains hindered by process heterogeneity and human factor variations. Concurrently, these factors also dramatically increase the difficulty in developing NLP models in multi-site settings, which is necessary for algorithm robustness and generalizability. Here, we reported on our experience developing an NLP solution for Coronavirus Disease 2019 (COVID-19) signs and symptom extraction in an open NLP framework from a subset of sites participating in the National COVID Cohort (N3C). We then empirically highlight the benefits of multi-site data for both symbolic and statistical methods, as well as highlight the need for federated annotation and evaluation to resolve several pitfalls encountered in the course of these efforts.


Subject(s)
COVID-19 , Natural Language Processing , Humans , Electronic Health Records , Algorithms
11.
Sleep ; 46(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37166330

ABSTRACT

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) has been associated with more severe acute coronavirus disease-2019 (COVID-19) outcomes. We assessed OSA as a potential risk factor for Post-Acute Sequelae of SARS-CoV-2 (PASC). METHODS: We assessed the impact of preexisting OSA on the risk for probable PASC in adults and children using electronic health record data from multiple research networks. Three research networks within the REsearching COVID to Enhance Recovery initiative (PCORnet Adult, PCORnet Pediatric, and the National COVID Cohort Collaborative [N3C]) employed a harmonized analytic approach to examine the risk of probable PASC in COVID-19-positive patients with and without a diagnosis of OSA prior to pandemic onset. Unadjusted odds ratios (ORs) were calculated as well as ORs adjusted for age group, sex, race/ethnicity, hospitalization status, obesity, and preexisting comorbidities. RESULTS: Across networks, the unadjusted OR for probable PASC associated with a preexisting OSA diagnosis in adults and children ranged from 1.41 to 3.93. Adjusted analyses found an attenuated association that remained significant among adults only. Multiple sensitivity analyses with expanded inclusion criteria and covariates yielded results consistent with the primary analysis. CONCLUSIONS: Adults with preexisting OSA were found to have significantly elevated odds of probable PASC. This finding was consistent across data sources, approaches for identifying COVID-19-positive patients, and definitions of PASC. Patients with OSA may be at elevated risk for PASC after SARS-CoV-2 infection and should be monitored for post-acute sequelae.


Subject(s)
COVID-19 , Sleep Apnea, Obstructive , Adult , Humans , Child , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Electronic Health Records , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Disease Progression , Risk Factors , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/epidemiology
12.
J Am Med Inform Assoc ; 30(7): 1305-1312, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37218289

ABSTRACT

Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C and NIH's All of Us study partnered to reproduce the output of N3C's trained model in the All of Us data enclave, demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping algorithms, prevent unnecessary rework, and promote open science in informatics.


Subject(s)
Boxing , COVID-19 , Population Health , Humans , Electronic Health Records , Post-Acute COVID-19 Syndrome , Reproducibility of Results , Machine Learning , Phenotype
13.
medRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205340

ABSTRACT

This study leverages electronic health record data in the National COVID Cohort Collaborative's (N3C) repository to investigate disparities in Paxlovid treatment and to emulate a target trial assessing its effectiveness in reducing COVID-19 hospitalization rates. From an eligible population of 632,822 COVID-19 patients seen at 33 clinical sites across the United States between December 23, 2021 and December 31, 2022, patients were matched across observed treatment groups, yielding an analytical sample of 410,642 patients. We estimate a 65% reduced odds of hospitalization among Paxlovid-treated patients within a 28-day follow-up period, and this effect did not vary by patient vaccination status. Notably, we observe disparities in Paxlovid treatment, with lower rates among Black and Hispanic or Latino patients, and within socially vulnerable communities. Ours is the largest study of Paxlovid's real-world effectiveness to date, and our primary findings are consistent with previous randomized control trials and real-world studies.

14.
Nat Commun ; 14(1): 2914, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217471

ABSTRACT

Long COVID, or complications arising from COVID-19 weeks after infection, has become a central concern for public health experts. The United States National Institutes of Health founded the RECOVER initiative to better understand long COVID. We used electronic health records available through the National COVID Cohort Collaborative to characterize the association between SARS-CoV-2 vaccination and long COVID diagnosis. Among patients with a COVID-19 infection between August 1, 2021 and January 31, 2022, we defined two cohorts using distinct definitions of long COVID-a clinical diagnosis (n = 47,404) or a previously described computational phenotype (n = 198,514)-to compare unvaccinated individuals to those with a complete vaccine series prior to infection. Evidence of long COVID was monitored through June or July of 2022, depending on patients' data availability. We found that vaccination was consistently associated with lower odds and rates of long COVID clinical diagnosis and high-confidence computationally derived diagnosis after adjusting for sex, demographics, and medical history.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , SARS-CoV-2 , Vaccination
15.
J Am Med Inform Assoc ; 30(6): 1125-1136, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37087110

ABSTRACT

OBJECTIVE: Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multisite electronic health record (EHR) data are networked together. This article presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite "macrovisits." MATERIALS AND METHODS: Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits. RESULTS: Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay (LOS) and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, LOS and measurement variance decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability. DISCUSSION: Encounters are a complex and heterogeneous component of EHR data and native data issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations, and developments are necessary to realize the full potential of modern real-world data. CONCLUSION: This article presents method developments to manipulate and resolve EHR encounter data issues in a generalizable way as a foundation for future research and analysis.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Health Facilities , Algorithms , Length of Stay
16.
BMC Med Inform Decis Mak ; 21(Suppl 6): 383, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894925

ABSTRACT

The World Health Organization's (WHO) international classification of disease version 11 (ICD-11) contains several features which enable improved classification of patient safety events. We have identified three suggestions to facilitate adoption of ICD-11 from the patient safety perspective. One, health system leaders at national, regional, and local levels should incorporate ICD-11 into all approaches to monitor patient safety. This will allow them to take advantage of the innovative patient safety classification methods embedded in ICD-11 to overcome several limitations related to existing patient safety surveillance methods. Two, application developers should incorporate ICD-11 into software solutions. This will accelerate adoption and utility of software-enabled clinical and administrative workflows relevant to patient safety management. This is enabled as a result of the ICD-11 application programming interface (or API) developed by the WHO. Third, health system leaders should adopt the ICD-11 using a continuous improvement framework. This will help leaders at national, regional and local levels to take advantage of specific existing initiatives which will be strengthened by ICD-11, including peer review comparisons, clinician engagement, and alignment of front-line safety efforts with post marketing surveillance of medical technologies. While the investment to adopt ICD-11 will be considerable, these will be offset by reducing the ongoing costs related to a lack of accurate routine information.


Subject(s)
International Classification of Diseases , Patient Safety , Humans , Global Health , Patients , Software
17.
BMC Med ; 21(1): 58, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36793086

ABSTRACT

BACKGROUND: Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of long COVID are still in flux, and the deployment of an ICD-10-CM code for long COVID in the USA took nearly 2 years after patients had begun to describe their condition. Here, we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." METHODS: We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code (n = 33,782), including assessing person-level demographics and a number of area-level social determinants of health; diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern differing patterns of care across the lifespan. RESULTS: We established the diagnoses most commonly co-occurring with U09.9 and algorithmically clustered them into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, non-Hispanic individuals, as well as individuals living in areas with low poverty and low unemployment. Our results also include a characterization of common procedures and medications associated with U09.9-coded patients. CONCLUSIONS: This work offers insight into potential subtypes and current practice patterns around long COVID and speaks to the existence of disparities in the diagnosis of patients with long COVID. This latter finding in particular requires further research and urgent remediation.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Female , International Classification of Diseases , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2
18.
medRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36656776

ABSTRACT

Although the COVID-19 pandemic has persisted for over 2 years, reinfections with SARS-CoV-2 are not well understood. We use the electronic health record (EHR)-based study cohort from the National COVID Cohort Collaborative (N3C) as part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative to characterize reinfection, understand development of Long COVID after reinfection, and compare severity of reinfection with initial infection. We validate previous findings of reinfection incidence (5.9%), the occurrence of most reinfections during the Omicron epoch, and evidence of multiple reinfections. We present novel findings that Long COVID diagnoses occur closer to the index date for infection or reinfection in the Omicron BA epoch. We report lower albumin levels leading up to reinfection and a statistically significant association of severity between first infection and reinfection (chi-squared value: 9446.2, p-value: 0) with a medium effect size (Cramer's V: 0.18, DoF = 4).

19.
EBioMedicine ; 87: 104413, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36563487

ABSTRACT

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Disease Progression , SARS-CoV-2
20.
Clin Transl Sci ; 16(3): 398-411, 2023 03.
Article in English | MEDLINE | ID: mdl-36478394

ABSTRACT

An increasing number of studies have reported using natural language processing (NLP) to assist observational research by extracting clinical information from electronic health records (EHRs). Currently, no standardized reporting guidelines for NLP-assisted observational studies exist. The absence of detailed reporting guidelines may create ambiguity in the use of NLP-derived content, knowledge gaps in the current research reporting practices, and reproducibility challenges. To address these issues, we conducted a scoping review of NLP-assisted observational clinical studies and examined their reporting practices, focusing on NLP methodology and evaluation. Through our investigation, we discovered a high variation regarding the reporting practices, such as inconsistent use of references for measurement studies, variation in the reporting location (reference, appendix, and manuscript), and different granularity of NLP methodology and evaluation details. To promote the wide adoption and utilization of NLP solutions in clinical research, we outline several perspectives that align with the six principles released by the World Health Organization (WHO) that guide the ethical use of artificial intelligence for health.


Subject(s)
Artificial Intelligence , Natural Language Processing , Humans , Electronic Health Records , Reproducibility of Results , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...