Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(24): 5416-5428, 2023 06 21.
Article in English | MEDLINE | ID: mdl-36825927

ABSTRACT

Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.


Subject(s)
Hydrogels , Polyethylene Glycols , Biocompatible Materials/pharmacology , Collagen , Cell Adhesion
2.
J Biomed Mater Res A ; 111(4): 465-477, 2023 04.
Article in English | MEDLINE | ID: mdl-36606332

ABSTRACT

A major challenge in chronic wound treatment is maintaining an appropriate wound moisture balance throughout the healing process. Wound dehydration hinders wound healing due to impeded molecule transport and cell migration with associated tissue necrosis. In contrast, wounds that produce excess fluid contain high levels of reactive oxygen species and matrix metalloproteases that impede cell recruitment, extracellular matrix reconstruction, and angiogenesis. Dressings are currently selected based on the relative amount of wound exudate with no universal dressing available that can maintain appropriate wound moisture balance to enhance healing. This work aimed to develop a high porosity poly(ethylene glycol) diacrylate hydrogel foam that can both rapidly remove exudate and provide self-tuning moisture control to prevent wound dehydration. A custom foaming device was used to vary hydrogel foam porosity from 25% to 75% by adjusting the initial air-to-solution volume ratio. Hydrogel foams demonstrated substantial improvements in water uptake volume and rate as compared to bulk hydrogels while maintaining similar hydration benefits with slow dehydration rates. The hydrogel foam with the highest porosity (~75%) demonstrated the greatest water uptake and rate, which outperformed commercial dressing products, Curafoam® and Silvercel®, in water absorption, moisture retention, and exudate management. Investigation of the water vapor transmission rates of each dressing at varied hydration levels was characterized and demonstrated the dynamic moisture-controlling capability of the hydrogel foam dressing. Overall, the self-tuning moisture control of this hydrogel foam dressing holds great promise to improve healing outcomes for both dry and exudative chronic wounds.


Subject(s)
Bandages , Dehydration , Humans , Porosity , Biocompatible Materials , Hydrogels
3.
Polymers (Basel) ; 13(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064400

ABSTRACT

Polymerization of high internal phase emulsions (polyHIPEs) is a well-established method for the production of high porosity foams. Researchers are often regulated to using a time-intensive trial and error approach to achieve target pore architectures. In this work, we performed a systematic study to identify the relative effects of common emulsion parameters on pore architecture (mixing speed, surfactant concentration, organic phase viscosity, molecular hydrophobicity). Across different macromer chemistries, the largest magnitude of change in pore size was observed across surfactant concentration (~6 fold, 5-20 wt%), whereas changing mixing speeds (~4 fold, 500-2000 RPM) displayed a reduced effect. Furthermore, it was observed that organic phase viscosity had a marked effect on pore size (~4 fold, 6-170 cP) with no clear trend observed with molecular hydrophobicity in this range (logP = 1.9-4.4). The efficacy of 1,4-butanedithiol as a reactive diluent was demonstrated and provides a means to reduce organic phase viscosity and increase pore size without affecting polymer fraction of the resulting foam. Overall, this systematic study of the microarchitectural effects of these macromers and processing variables provides a framework for the rational design of polyHIPE architectures that can be used to accelerate design and meet application needs across many sectors.

4.
Org Lett ; 23(8): 2873-2877, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33784461

ABSTRACT

Typically, Suzuki couplings used in polymerizations are performed at raised temperatures in inert atmospheres. As a result, the synthesis of aromatic materials that utilize this chemistry often demands expensive and specialized equipment on an industrial scale. Herein, we describe a bimetallic methodology that exploits the distinct reactivities of palladium and copper to perform high yielding aryl-aryl dimerizations and polymerizations that can be performed on a benchtop under ambient conditions. These couplings are facile and can be performed by simple mixing in the open vessel. To demonstrate the utility of this method in the context of polymer synthesis: polyfluorene, polycarbazole, polysilafluorene, and poly(6,12-dihydro-dithienoindacenodithiophene) were created at ambient temperature and open to air.

5.
Adv Healthc Mater ; : e2000795, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32940020

ABSTRACT

The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.

6.
J Am Chem Soc ; 142(8): 3913-3922, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32011873

ABSTRACT

Polymer topology dictates dynamic and mechanical properties of materials. For most polymers, topology is a static characteristic. In this article, we present a strategy to chemically trigger dynamic topology changes in polymers in response to a specific chemical stimulus. Starting with a dimerized PEG and hydrophobic linear materials, a lightly cross-linked polymer, and a cross-linked hydrogel, transformations into an amphiphilic linear polymer, lightly cross-linked and linear random copolymers, a cross-linked polymer, and three different hydrogel matrices were achieved via two controllable cross-linking reactions: reversible conjugate additions and thiol-disulfide exchange. Significantly, all the polymers, before or after topological changes, can be triggered to degrade into thiol- or amine-terminated small molecules. The controllable transformations of polymeric morphologies and their degradation herald a new generation of smart materials.


Subject(s)
Hydrogels/chemistry , Polymers/chemistry , Click Chemistry , Cross-Linking Reagents/chemistry , Dimerization , Hydrophobic and Hydrophilic Interactions , Molecular Structure
7.
Proc Natl Acad Sci U S A ; 115(9): 2096-2101, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440400

ABSTRACT

Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a ß-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.


Subject(s)
Gene Expression Regulation, Plant/physiology , Genetic Engineering/methods , Pyrones/metabolism , Yarrowia/metabolism , Molecular Structure , Oxidation-Reduction , Pyrones/chemistry , Pyruvates/metabolism , Yarrowia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...