Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13606, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051514

ABSTRACT

Post-infectious irritable bowel syndrome (PI-IBS) is a common gastrointestinal disorder characterized by persistent abdominal pain despite recovery from acute gastroenteritis. The underlying mechanisms are unclear, although long-term changes in neuronal function, and low grade inflammation of the bowel have been hypothesized. We investigated the presence and mechanism of neuronal sensitization in a unique cohort of individuals who developed PI-IBS following exposure to contaminated drinking water 7 years ago. We provide direct evidence of ongoing sensitization of neuronal signaling in the bowel of patients with PI-IBS. These changes occur in the absence of any detectable tissue inflammation, and instead appear to be driven by pro-nociceptive changes in the gut micro-environment. This is evidenced by the activation of murine colonic afferents, and sensitization responses to capsaicin in dorsal root ganglia (DRGs) following application of supernatants generated from tissue biopsy of patients with PI-IBS. We demonstrate that neuronal signaling within the bowel of PI-IBS patients is sensitized 2 years after the initial infection has resolved. This sensitization appears to be mediated by a persistent pro-nociceptive change in the gut micro-environment, that has the capacity to stimulate visceral afferents and facilitate neuronal TRPV1 signaling.


Subject(s)
Irritable Bowel Syndrome/diagnosis , Adult , Animals , Capsaicin/pharmacology , Case-Control Studies , Colon/pathology , Cytokines/metabolism , Female , Ganglia, Spinal/pathology , Gastroenteritis/complications , Gastroenteritis/pathology , Humans , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/etiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neurons/drug effects , Neurons/metabolism , Receptors, Histamine H1/metabolism , Signal Transduction , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
2.
Neuroscience ; 156(1): 175-83, 2008 Sep 22.
Article in English | MEDLINE | ID: mdl-18694808

ABSTRACT

In recent years a role for EphB receptor tyrosine kinases and their ephrinB ligands in activity-dependent synaptic plasticity in the CNS has been identified. The aim of the present study was to test the hypothesis that EphB receptor activation in the adult rat spinal cord is involved in synaptic plasticity and processing of nociceptive inputs, through modulation of the function of the glutamate ionotropic receptor NMDA (N-methyl-D-aspartate). In particular, EphB receptor activation would induce phosphorylation of the NR2B subunit of the NMDA receptor by a Src family non-receptor tyrosine kinase. Intrathecal administration of ephrinB2-Fc in adult rats, which can bind to and activate EphB receptors and induce behavioral thermal hyperalgesia, led to NR2B tyrosine phosphorylation, which could be blocked by the Src family kinase inhibitor PP2. Furthermore animals pre-treated with PP2 did not develop behavioral thermal hyperalgesia following EphrinB2-Fc administration, suggesting that this pathway is functionally significant. Indeed, EphB1-Fc administration, which competes with the endogenous receptor for ephrinB2 binding and prevents behavioral allodynia and hyperalgesia in the carrageenan model of inflammation, also inhibited NR2B phosphorylation in this model. Taken together these findings support the hypothesis that EphB-ephrinB interactions play an important role in NMDA-dependent, activity-dependent synaptic plasticity in the adult spinal cord, inducing the phosphorylation of the NR2B subunit of the receptor via Src family kinases, thus contributing to chronic pain states.


Subject(s)
Ephrin-B2/metabolism , Hyperalgesia/metabolism , Inflammation/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Tyrosine/metabolism , src-Family Kinases/metabolism , Animals , Binding, Competitive/drug effects , Binding, Competitive/physiology , Carrageenan/pharmacology , Ephrin-B2/pharmacology , Glutamic Acid/metabolism , Hyperalgesia/physiopathology , Inflammation/physiopathology , Inflammation Mediators/pharmacology , Male , Neural Pathways/metabolism , Neural Pathways/physiopathology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nociceptors/metabolism , Pain, Intractable/metabolism , Pain, Intractable/physiopathology , Phosphorylation/drug effects , Posterior Horn Cells/metabolism , Posterior Horn Cells/physiopathology , Rats , Rats, Wistar , Receptor, EphB1/agonists , Receptors, Eph Family/agonists , Receptors, Eph Family/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , src-Family Kinases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...