Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 196: 106415, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395681

ABSTRACT

Environmental DNA (eDNA) techniques are emerging as promising tools for monitoring marine communities. However, they have not been applied to study the integrated effects of anthropogenic pressures on marine biodiversity. This study examined the relationships between demersal community species composition, key environmental features, and anthropogenic impacts such as fishing effort and seafloor litter using eDNA data in the central Tyrrhenian Sea. The results indicated that both fishing effort and seafloor litter influenced species composition and diversity. The adaptive traits of marine species played a critical role in their response to debris accumulation and fishing. Mobile species appeared to use relocation strategies, while sessile species showed flexibility in the face of disturbance. Epibiotic species relied on passive transport. The use of eDNA-based methods is a valuable resource for monitoring anthropogenic impacts during scientific surveys, enhancing our ability to monitor marine ecosystems and more effectively assess the effects of pollution.


Subject(s)
DNA, Environmental , Ecosystem , DNA Barcoding, Taxonomic/methods , Biodiversity , Environmental Pollution , Environmental Monitoring/methods
2.
Biology (Basel) ; 12(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37759667

ABSTRACT

An advanced characterization of the trophic niche of non-indigenous species (NIS) may provide useful information on their ecological impact on invaded communities. Here, we used carbon and nitrogen stable isotopes to estimate pairwise niche overlaps between non-indigenous and native consumers in the winter food web of Lake Trasimeno (central Italy). Overall, a relatively low pairwise overlap of isotopic niches was observed between NIS and native species. The only exception was the Louisiana crayfish Procambarus clarkii, which showed a relatively high and diffuse overlap with other native invertebrates. Our findings highlighted a high niche divergence between non-indigenous and native species in Lake Trasimeno, suggesting a potentially low degree of interspecific competition that may facilitate coexistence and, in turn, limit the strength of impacts. The divergent results obtained for the Louisiana crayfish indicate that additional control measures for this invasive species are needed to mitigate its impact on the Lake Trasimeno system.

3.
Ecotoxicol Environ Saf ; 239: 113619, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35605320

ABSTRACT

Phthalic acid esters (PAEs) are classified as endocrine disruptors, but it remains unclear if they can enter the marine food-web and result in severe health effects for organisms. Loggerhead turtles (Caretta caretta) can be chronically exposed to PAEs by ingesting plastic debris, but no information is available about PAEs levels in blood, and how these concentrations are related to diet during different life stages. This paper investigated, for the first time, six PAEs in blood of 18 wild-caught Mediterranean loggerhead turtles throughout solid-phase extraction coupled with gas chromatography-ion trap/mass spectrometry. Stable isotope analyses of carbon and nitrogen were also performed to assess the resource use pattern of loggerhead turtles. DEHP (12-63 ng mL-1) and DBP (6-57 ng mL-1) were the most frequently represented PAEs, followed by DiBP, DMP, DEP and DOP. The total PAEs concentration was highest in three turtles (124-260 ng mL-1) whereas three other turtles had concentrations below the detection limit. PAEs were clustered in three groups according to concentration in all samples: DEHP in the first group, DBP, DEP, and DiBP in the second group, and DOP and DMP in the third group. The total phthalates concentration did not differ between large-sized (96.3 ± 86.0 ng mL-1) and small-sized (67.1 ± 34.2 ng mL-1) turtles (p < 0.001). However, DMP and DEP were found only in large-sized turtles and DiBP and DBP had higher concentrations in large-sized turtles. On the other hand, DEHP and DOP were found in both small- and large-sized turtles with similar concentrations, i.e. ~ 21.0/32.0 ng mL-1 and ~ 7.1/9.9 ng mL-1, respectively. Winsored robust models indicated that δ13C is a good predictor for DBP and DiBP concentrations (significant Akaike Information criterion weight, AICwt). Our results indicate that blood is a good matrix to evaluate acute exposure to PAEs in marine turtles. Moreover, this approach is here suggested as a useful tool to explain the internal dose of PAEs in term of dietary habits (δ13C), suggesting that all marine species at high trophic levels may be particularly exposed to PAEs, despite their different dietary habitats and levels of exposure.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Turtles , Animals , Diet , Diethylhexyl Phthalate/analysis , Ecosystem , Esters/analysis , Gas Chromatography-Mass Spectrometry , Phthalic Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...