Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35873359

ABSTRACT

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

2.
PLoS One ; 17(5): e0267801, 2022.
Article in English | MEDLINE | ID: mdl-35580083

ABSTRACT

Freshwater ecosystems host disproportionately high numbers of species relative to their surface area yet are poorly protected globally. We used data on the distribution of 1631 species of aquatic plant, mollusc, odonate and fish in 18,816 river and lake catchments in Europe to establish spatial conservation priorities based on the occurrence of threatened, range-restricted and endemic species using the Marxan systematic conservation planning tool. We found that priorities were highest for rivers and ancient lakes in S Europe, large rivers and lakes in E and N Europe, smaller lakes in NW Europe and karst/limestone areas in the Balkans, S France and central Europe. The a priori inclusion of well-protected catchments resulted in geographically more balanced priorities and better coverage of threatened (critically endangered, endangered and vulnerable) species. The a priori exclusion of well-protected catchments showed that priority areas that need further conservation interventions are in S and E Europe. We developed three ways to evaluate the correspondence between conservation priority and current protection by assessing whether a cathment has more (or less) priority given its protection level relative to all other catchments. Each method found that priority relative to protection was high in S and E Europe and generally low in NW Europe. The inclusion of hydrological connectivity had little influence on these patterns but decreased the coverage of threatened species, indicating a trade-off between connectivity and conservation of threatened species. Our results suggest that catchments in S and E Europe need urgent conservation attention (protected areas, restoration, management, species protection) in the face of imminent threats such as river regulation, dam construction, hydropower development and climate change. Our study presents continental-scale conservation priorities for freshwater ecosystems in ecologically meaningful planning units and will thus be important in freshwater biodiversity conservation policy and practice, and water management in Europe.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Balkan Peninsula , Biodiversity , Conservation of Natural Resources/methods , Lakes
3.
Sci Total Environ ; 804: 150022, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517322

ABSTRACT

As complex mosaics of lotic, lentic, and terrestrial habitats, intermittent rivers and ephemeral streams (IRES) support high biodiversity. Despite their ecological importance, IRES are poorly represented in routine monitoring programs, but recent recognition of their considerable-and increasing-spatiotemporal extent is motivating efforts to better represent IRES in ecological status assessments. We examine response patterns of aquatic macroinvertebrate communities and taxa to flow intermittence (FI) across three European climatic regions. We used self-organizing map (SOM) to ordinate and classify sampling sites based on community structure in regions with continental, Mediterranean and oceanic climates. The SOM passively introduced FI, quantified as the mean annual % flow, and visualized its variability across classified communities, revealing a clear association between community structure and FI in all regions. Indicator species analysis identified taxa indicative of low, intermediate and high FI. In the continental region, the amphipod Niphargus was indicative of high FI and was associated with groundwater-fed IRES, whereas indicators of Mediterranean IRES comprised Odonata, Coleoptera and Heteroptera taxa, which favor lentic conditions. In the oceanic region, taxa indicative of relatively high FI included leuctrid stoneflies and a limnephilid caddisfly, likely reflecting the colonization of IRES by aerial adults from nearby perennial reaches. The Diptera families Chironomidae and Simuliidae showed contrasting FI preferences among regions, reflecting environmental heterogeneity between regions and the coarse taxonomic resolution to which these organisms were identified. These region-specific community and taxon responses of aquatic biota to FI highlight the need to adapt standard biotic indices to enable effective ecological status assessments in IRES.


Subject(s)
Environmental Biomarkers , Rivers , Animals , Ecosystem , Environmental Monitoring , Humans , Insecta , Invertebrates
4.
Sci Data ; 7(1): 386, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177529

ABSTRACT

Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.


Subject(s)
Animal Distribution , Aquatic Organisms , Invertebrates , Animals , Conservation of Natural Resources , Ecology , Environmental Monitoring , Europe
5.
Bioscience ; 70(5): 427-438, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32440024

ABSTRACT

Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers-prevalent and highly dynamic ecosystems that sometimes dry-we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.

6.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Article in English | MEDLINE | ID: mdl-30628191

ABSTRACT

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Subject(s)
Nutrients/analysis , Organic Chemicals/analysis , Rivers/chemistry , Biofilms/growth & development , Biological Availability , Climate , Climate Change , Geologic Sediments/chemistry , Nitrates/analysis , Plant Leaves/chemistry
7.
Sci Total Environ ; 618: 1096-1113, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29074240

ABSTRACT

Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context.


Subject(s)
Ecosystem , Environmental Monitoring , Rivers , Conservation of Natural Resources , Ecology , Europe
8.
Sci Total Environ ; 607-608: 519-540, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28704676

ABSTRACT

When the regime of a river is not perennial, there are four main difficulties with the use of hydrographs for assessing hydrological alteration: i) the main hydrological features relevant for biological communities are not quantitative (discharges) but qualitative (phases such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, iii) as most of the temporary streams are ungauged, their regime has to be evaluated by alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must follow a sampling schedule and references adapted to the flow- pool-dry regime. To overcome these challenges within an operational approach, the freely available software tool TREHS has been developed within the EU LIFE TRIVERS project. This software permits the input of information from flow simulations obtained with any rainfall-runoff model (to set an unimpacted reference stream regime) and compares this with the information obtained from flow gauging records (if available) and interviews with local people, as well as instantaneous observations by individuals and interpretation of ground-level or aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine natural and observed river regimes and to assess the degree of hydrological alteration. A new regime classification specifically designed for temporary rivers was developed using the metrics that measure the relative permanence of the three main phases: flow, disconnected pools and dry stream bed. Finally, the software characterizes the differences between the natural and actual regimes, diagnoses the hydrological status (degree of hydrological alteration), assesses the significance and robustness of the diagnosis and recommends the best periods for biological quality samplings.


Subject(s)
Environmental Monitoring/instrumentation , Rivers , Software , Biota , Hydrology , Water Movements
9.
Oecologia ; 165(4): 1063-72, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20922431

ABSTRACT

Although the ecological and economic effects of non-native species probably often change through time, few studies have documented such effects. The zebra mussel (Dreissena polymorpha) is an important invader that has had large ecological and economic effects on the ecosystems it has invaded in North America and western Europe. Our 20-year study of the Hudson River, New York, showed that the characteristics of a zebra mussel population and its effects on other benthic animals both changed substantially through time. Over the period of study, annual survivorship of adult zebra mussels fell >100-fold, which caused the aggregate filtration rate of the population to fall by 82%. Population size and body size of zebra mussels may also have fallen. In the early years of the invasion, densities of nearly all benthic animals in deepwater sites fell steeply (by 80-99%). After about 8 years of decline, these populations began to recover, and are approaching pre-invasion densities. The littoral zoobenthos showed neither the initial decline nor the subsequent recovery. Although the mechanisms behind these changes are not fully clear, our study shows that the effects of an invader may change considerably over time.


Subject(s)
Bivalvia/physiology , Ecosystem , Insecta/physiology , Animals , Bivalvia/growth & development , Body Size , Dreissena/growth & development , Dreissena/physiology , Insecta/growth & development , New York , Oligochaeta/growth & development , Oligochaeta/physiology , Population Density , Rivers , Time Factors
10.
Sci Total Environ ; 408(14): 2795-806, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20394964

ABSTRACT

This study focused on the metal bioaccumulation of two aquatic insects (Ephoron virgo and Hydropsyche spp.) in order to evaluate the spatial distribution of metals, the interspecific differences between both filter-feeders and the bioaccumulation dynamics during E. virgo development stages. Hg, Cd, Ni, Cr, As, Pb, Cu, Ti, Zn and Mn were quantified in insects and in suspended particulate matter (SPM) sampled downstream and upstream of a chemical plant, where more than 300,000t of polluted sediments are deposited. Hg concentrations were one order of magnitude higher downstream of the sediment dump, which showed that the Hg pollution originated in the chemical plant. Cd, Ni, Cr, Pb, Ti, Zn and Mn in invertebrates revealed that metal pollution was present upstream in other parts of the river. Interspecific differences were observed for all metals but Mn; significantly higher concentrations were observed in E. virgo over Hydropsyche exocellata, except for Cd, which showed 10-fold higher values. Hg and Cd increased until E. virgo nymphs reached 11 mm and decreased afterwards in late instars when nymphs were about to emerge. Cr, Pb, Ti and Mn decreased along early instars followed by a steady state in late instars. Similar values were obtained for Cu, As and Zn along all instars. Sexual differences between males and females of E. virgo were observed for Cd, Cu and Mn. Hg and Cd persistence was strong across developmental stages since high concentrations were found in eggs and emerging adults. Because the behavior of different metals varied for the two species and during the developmental stages of E. virgo, care should be taken in the interpretation of insect metal concentrations when analyzing the food chain transfer of metals in river ecosystems.


Subject(s)
Environmental Exposure/analysis , Insecta/metabolism , Life Cycle Stages/drug effects , Metals, Heavy/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Animals , Chemical Industry , Ecosystem , Female , Geologic Sediments/chemistry , Insecta/growth & development , Male , Metals, Heavy/analysis , Particle Size , Rivers/chemistry , Sex Characteristics , Spain , Species Specificity , Tissue Distribution , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...