Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Ophthalmic Res ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004077

ABSTRACT

INTRODUCTION: To evaluate the progression of atrophy as determined by spectral-domain optical coherence tomography (SD-OCT) in patients with molecularly confirmed ABCA4-associated Stargardt disease type 1 (STGD1) over a 24-month period in a multicenter prospective cohort study. METHODS: SD-OCT images from 428 eyes of 236 patients were analyzed. Change of mean thickness (MT) and intact area were estimated after semi-automated segmentation for the following individual layers in the central subfield (CS), inner ring (IR) and outer ring (OR) of the ETDRS grid: retinal pigment epithelium (RPE), outer segments (OS), inner segments (IS), outer nuclear layer (ONL) inner retina (IR) and total retina (TR). RESULTS: Statistically significant decreases of all outer retinal layers (RPE, OS, IS, and ONL) could be observed over a 24-month period both in decline of mean retinal thickness and intact area (p<.0001, respectively); whereas the inner retina showed an increase of retinal thickness in the central subfield and inner ring and remained unchanged in the outer ring. CONCLUSIONS: Significant loss could be detected in outer retinal layers by SD-OCT over a 24-month period in patients with STGD1. Loss of thickness and/or intact area of such layers may serve as potential endpoints for clinical trials that aim to slow down the disease progression of STGD1.

2.
Ophthalmic Genet ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956823

ABSTRACT

PURPOSE: To gain an insight into the pathophysiology of RAB28-associated inherited retinal degeneration through detailed phenotyping and long-term longitudinal follow-up. METHODS: The patient underwent complete ophthalmic examinations. Visual function was assessed with microperimetry, full-field electroretinography (ffERG), imaging with optical coherence tomography (OCT), short-wave (SW), and near-infrared (NIR) fundus autofluorescence (FAF). RESULTS: A healthy Haitian woman with homozygous pathogenic variants (c.68C > T; p.Ser23Phe) in RAB28 presented at 16 years of age with a four-year history of blurred vision. Visual acuities were 20/125 in each eye, which remained relatively stable since. At age 27, cone ffERGs were non-detectable and borderline for rod-mediated responses. Kinetic fields were full to a V-4e target, undetectable to a small I-4e stimulus. Microperimetry showed an absolute central scotoma surrounded by a pericentral relative scotoma. SD-OCT showed an undetectable or barely detectable foveal and parafoveal photoreceptor outer nuclear layer (ONL), photoreceptor outer segment (POS), and retinal pigment epithelium (RPE) signals and loss of the SW- and NIR-FAF signals. This atrophic region was separated from a normally laminated retina by a narrow transition zone (TZ) of hyper SW- and NIR-FAF that co-localized with preserved ONL but abnormally thinned POS and RPE. There was minimal centrifugal (<100 µm) expansion over a six-year period. CONCLUSION: The cone-rod dystrophy phenotype documented herein supports a critical role of RAB28 for cone function and POS maintenance. Severe central photoreceptor and RPE loss with a predilection for POS loss in TZs suggests possible disruptions of complex mechanisms that maintain central cone photoreceptor and RPE homeostasis.

4.
Vision Res ; 218: 108379, 2024 05.
Article in English | MEDLINE | ID: mdl-38460402

ABSTRACT

Mutations in BEST1 cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different BEST1 mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with BEST1 mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and BEST1 mutations.


Subject(s)
Retina , Tomography, Optical Coherence , Dogs , Animals , Retinal Cone Photoreceptor Cells , Vision, Ocular
5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256083

ABSTRACT

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.


Subject(s)
Alkyl and Aryl Transferases , Glucosyltransferases , Membrane Proteins , Retinal Degeneration , Humans , Genes, Modifier , Glucosyltransferases/genetics , Membrane Proteins/genetics , Mutation , Retina , Retinal Degeneration/genetics
6.
Invest Ophthalmol Vis Sci ; 64(15): 33, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133503

ABSTRACT

Purpose: Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods: Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results: Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions: Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.


Subject(s)
Genetic Therapy , Retinal Degeneration , Humans , Adult , Middle Aged , Aged , Late Onset Disorders/genetics , Late Onset Disorders/pathology , Late Onset Disorders/therapy , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/therapy , Collagen/genetics , Male , Female , Fovea Centralis/pathology , Tomography, Optical Coherence , Genetic Therapy/methods , Gene Editing
7.
Am J Ophthalmol Case Rep ; 32: 101873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37388818

ABSTRACT

Purpose: An intravitreally injected antisense oligonucleotide, sepofarsen, was designed to modulate splicing within retinas of patients with severe vision loss due to deep intronic c.2991 + 1655A > G variant in the CEP290 gene. A previous report showed vision improvements following a single injection in one eye with unexpected durability lasting at least 15 months. The current study evaluated durability of efficacy beyond 15 months in the previously treated left eye. In addition, peak efficacy and durability were evaluated in the treatment-naive right eye, and re-injection of the left eye 4 years after the first injection. Observations: Visual function was evaluated with best corrected standard and low-luminance visual acuities, microperimetry, dark-adapted chromatic perimetry, and full-field sensitivity testing. Retinal structure was evaluated with OCT imaging. At the fovea, all visual function measures and IS/OS intensity of the OCT showed transient improvements peaking at 3-6 months, remaining better than baseline at ∼2 years, and returning to baseline by 3-4 years after each single injection. Conclusions and Importance: These results suggest that sepofarsen reinjection intervals may need to be longer than 2 years.

8.
Am J Ophthalmol ; 250: 157-170, 2023 06.
Article in English | MEDLINE | ID: mdl-36764427

ABSTRACT

PURPOSE: To estimate the progression rate of atrophic lesions in Stargardt disease derived from fundus autofluorescence (FAF). DESIGN: International, multicenter, prospective cohort study. METHODS: A total of 259 participants aged ≥6 years with disease-causing variants in the ABCA4 gene were enrolled from 9 centers and followed over a 24-month period. FAF images were obtained every 6 months, and areas of definitely decreased autofluorescence (DDAF) and decreased autofluorescence (DAF) were quantified. Progression rates were estimated from linear mixed models with time as the independent variable. RESULTS: A total of 488 study eyes of 259 participants (88.8% with both eyes) were enrolled and images from 432 eyes were followed for 24 months. The overall estimated progression of DDAF was 0.74 mm2/y (95% CI 0.64-0.85, P < .0001) and that of DAF was 0.64 mm2/y (95% CI 0.57-0.71) over a 24-month period in univariate analysis. Growth rates were strongly dependent on baseline lesion area. After square root transformation, the DDAF growth rate was not dependent on baseline lesion radius (P = .11), whereas the DAF growth rate was dependent (P < .0001). Genotype was not found to significantly impact the growth rate of DDAF or DAF lesions. CONCLUSIONS: FAF may serve as a convenient monitoring tool and suitable end point for interventional clinical trials that aim to slow disease progression. DDAF and DAF lesion sizes at baseline are strong predicting factors for lesion area growth and can be partially accounted for by square root transformation.


Subject(s)
Macular Degeneration , Humans , Stargardt Disease , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Prospective Studies , Visual Acuity , Fundus Oculi , Disease Progression , Fluorescein Angiography , ATP-Binding Cassette Transporters/genetics
9.
Transl Vis Sci Technol ; 12(1): 25, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36692456

ABSTRACT

Purpose: Blue cone monochromacy (BCM) is an X-linked retinopathy due to mutations in the OPN1LW/OPN1MW gene cluster. Symptoms include reduced visual acuity and disturbed color vision. We studied BCM color vision to determine outcome measures for future clinical trials. Methods: Patients with BCM and normal-vision participants were examined with Farnsworth-Munsell (FM) arrangement tests and the Color Assessment and Diagnosis (CAD) test. A retrospective case series in 36 patients with BCM (ages 6-70) was performed with the FM D-15 test. A subset of six patients also had Roth-28 Hue and CAD tests. Results: All patients with BCM had abnormal results for D-15, Roth-28, and CAD tests. With D-15, there was protan-deutan confusion and no bimodal tendency. Roth-28 results reinforced that finding. There was symmetry in color vision metrics between the two eyes and coherence between sessions with the arrangement tests and CAD. Severe abnormalities in red-green sensitivity with CAD were expected. Unexpected were different levels of yellow-blue results with two patterns of abnormal thresholds: moderate elevation in two younger patients and severe elevation in four patients ≥35 years. Coefficients of repeatability and intersession means were tabulated for all test modalities. Conclusions: Given understanding of advantages, disadvantages, and complexities of interpretation of results, both an arrangement test and CAD should be useful monitors of color vision through a clinical trial in BCM. Translational Relevance: Our pilot studies in BCM of arrangement and CAD tests indicated both were clinically feasible and interpretable in the context of this cone gene disease.


Subject(s)
Color Vision Defects , Color Vision , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Retrospective Studies , Color Vision Defects/diagnosis , Color Vision Defects/genetics , Outcome Assessment, Health Care
10.
Vision Res ; 203: 108157, 2023 02.
Article in English | MEDLINE | ID: mdl-36450205

ABSTRACT

The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.


Subject(s)
Bestrophins , Retinal Degeneration , Animals , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bestrophins/genetics , Mutation , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Humans
11.
Invest Ophthalmol Vis Sci ; 63(13): 12, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36512348

ABSTRACT

Purpose: The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods: Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results: Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions: Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.


Subject(s)
Vitelliform Macular Dystrophy , Humans , Vitelliform Macular Dystrophy/diagnosis , Vitelliform Macular Dystrophy/genetics , Eye Proteins/genetics , Tomography, Optical Coherence/methods , Visual Field Tests , Mutation , Bestrophins/genetics
12.
Ophthalmol Sci ; 2(2): 100133, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36249682

ABSTRACT

Purpose: To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design: Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants: A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15-41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention: Participants received a single intravitreal injection of sepofarsen (160 or 320 µg) into the study eye. Main Outcome Measures: Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results: All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of -1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions: By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.

13.
iScience ; 25(10): 105274, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274938

ABSTRACT

Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.

14.
Proc Natl Acad Sci U S A ; 119(27): e2115538119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35759666

ABSTRACT

Blue cone monochromacy (BCM) is an X-linked retinal disorder characterized by low vision, photoaversion, and poor color discrimination. BCM is due to the lack of long-wavelength-sensitive and middle-wavelength-sensitive cone photoreceptor function and caused by mutations in the OPN1LW/OPN1MW gene cluster on Xq28. Here, we investigated the prevalence and the landscape of submicroscopic structural variants (SVs) at single-base resolution in BCM patients. We found that about one-third (n = 73) of the 213 molecularly confirmed BCM families carry an SV, most commonly deletions restricted to the OPN1LW/OPN1MW gene cluster. The structure and precise breakpoints of the SVs were resolved in all but one of the 73 families. Twenty-two families-all from the United States-showed the same SV, and we confirmed a common ancestry of this mutation. In total, 42 distinct SVs were identified, including 40 previously unreported SVs, thereby quadrupling the number of precisely mapped SVs underlying BCM. Notably, there was no "region of overlap" among these SVs. However, 90% of SVs encompass the upstream locus control region, an essential enhancer element. Its minimal functional extent based on deletion mapping in patients was refined to 358 bp. Breakpoint analyses suggest diverse mechanisms underlying SV formation as well as in one case the gene conversion-based exchange of a 142-bp deletion between opsin genes. Using parsimonious assumptions, we reconstructed the composition and copy number of the OPN1LW/OPN1MW gene cluster prior to the mutation event and found evidence that large gene arrays may be predisposed to the occurrence of SVs at this locus.


Subject(s)
Color Vision Defects , Rod Opsins , Color Vision Defects/genetics , Gene Deletion , Humans , Multigene Family/genetics , Retinal Cone Photoreceptor Cells , Rod Opsins/genetics
15.
BMC Ophthalmol ; 22(1): 266, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701753

ABSTRACT

BACKGROUND: Inherited retinal degenerations (IRDs) affect daylight and night vision to different degrees. In the current work, we devise a method to quantify mobility under dark-adapted conditions in patients with severe childhood blindness due to Leber congenital amaurosis (LCA). Mobility thresholds from two different LCA genotypes are compared to dark-adapted vision measurements using the full-field stimulus test (FST), a conventional desktop outcome measure of rod vision. METHODS: A device consisting of vertical LED strips on a plane resembling a beaded curtain was programmed to produce a rectangular pattern target defining a 'door' of varying luminance that could appear at one of three positions. Mobility performance was evaluated by letting the subject walk from a fixed starting position ~ 4 m away from the device with instructions to touch the door. Success was defined as the subject touching within the 'door' area. Ten runs were performed and the process was repeated for different levels of luminance. Tests were performed monocularly in dark-adapted and dilated eyes. Results from LCA patients with the GUCY2D and CEP290 genotypes and normal subjects were analyzed using logistic regression to estimate the mobility threshold for successful navigation. The relation of thresholds for mobility, FST and visual acuity were quantified using linear regression. RESULTS: Normal subjects had mobility thresholds near limits of dark-adapted rod vision. GUCY2D-LCA patients had a wide range of mobility thresholds from within 1 log of normal to greater than 8 log abnormal. CEP290-LCA patients had abnormal mobility thresholds that were between 5 and 6 log from normal. Sensitivity loss estimates using FST related linearly to the mobility thresholds which were not correlated with visual acuity. CONCLUSIONS: The mobility task we developed can quantify functional vision in severely disabled patients with LCA. Taken together with other outcome measures of rod and cone photoreceptor-mediated vision, dark-adapted functional vision should provide a more complete understanding of the natural history and effects of treatment in patients with LCA.


Subject(s)
Leber Congenital Amaurosis , Retinal Degeneration , Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Child , Cytoskeletal Proteins/genetics , Dark Adaptation , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/genetics , Mutation , Retinal Cone Photoreceptor Cells , Vision, Ocular
16.
Nat Med ; 28(5): 1014-1021, 2022 05.
Article in English | MEDLINE | ID: mdl-35379979

ABSTRACT

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Subject(s)
Leber Congenital Amaurosis , Adult , Antigens, Neoplasm/genetics , Blindness/genetics , Cell Cycle Proteins/genetics , Child , Cytoskeletal Proteins/metabolism , Humans , Leber Congenital Amaurosis/drug therapy , Leber Congenital Amaurosis/genetics , Oligonucleotides, Antisense/adverse effects , Vision, Ocular
17.
Am J Ophthalmol ; 236: 32-44, 2022 04.
Article in English | MEDLINE | ID: mdl-34695402

ABSTRACT

PURPOSE: To estimate and compare cross-sectional scotopic versus mesopic macular sensitivity losses measured by microperimetry, and to report and compare the longitudinal rates of scotopic and mesopic macular sensitivity losses in ABCA4 gene-associated Stargardt disease (STGD1). DESIGN: This was a multicenter prospective cohort study. METHODS: Participants comprised 127 molecularly confirmed STGD1 patients enrolled from 6 centers in the United States and Europe and followed up every 6 months for up to 2 years. The Nidek MP-1S device was used to measure macular sensitivities of the central 20° under mesopic and scotopic conditions. The mean deviations (MD) from normal for mesopic macular sensitivity for the fovea (within 2° eccentricity) and extrafovea (4°-10° eccentricity), and the MD for scotopic sensitivity for the extrafovea, were calculated. Linear mixed effects models were used to estimate mesopic and scotopic changes. Main outcome measures were baseline mesopic mean deviation (mMD) and scotopic MD (sMD) and rates of longitudinal changes in the mMDs and sMD. RESULTS: At baseline, all eyes had larger sMD, and the difference between extrafoveal sMD and mMD was 10.7 dB (P < .001). Longitudinally, all eyes showed a statistically significant worsening trend: the rates of foveal mMD and extrafoveal mMD and sMD changes were 0.72 (95% CI = 0.37-1.07), 0.86 (95% CI = 0.58-1.14), and 1.12 (95% CI = 0.66-1.57) dB per year, respectively. CONCLUSIONS: In STGD1, in extrafovea, loss of scotopic macular function preceded and was faster than the loss of mesopic macular function. Scotopic and mesopic macular sensitivities using microperimetry provide alternative visual function outcomes for STGD1 treatment trials.


Subject(s)
Macular Degeneration , Visual Field Tests , ATP-Binding Cassette Transporters , Cross-Sectional Studies , Fovea Centralis , Humans , Macular Degeneration/complications , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Prospective Studies , Stargardt Disease , Tomography, Optical Coherence , Visual Acuity
18.
Prog Retin Eye Res ; 87: 101000, 2022 03.
Article in English | MEDLINE | ID: mdl-34464742

ABSTRACT

Disease mechanisms have become better understood in previously incurable forms of early-onset severe retinal dystrophy, such as Leber congenital amaurosis (LCA). This has led to novel treatments and clinical trials that have shown some success. Standard methods to measure vision were difficult if not impossible to perform in severely affected patients with low vision and nystagmus. To meet the need for visual assays, we devised a psychophysical method, which we named full-field stimulus testing (FST). From early versions based on an automated perimeter, we advanced FST to a more available light-emitting diode platform. The journey from invention to use of such a technique in our inherited retinal degeneration clinic is reviewed and many of the lessons learned over the 15 years of application of FST are explained. Although the original purpose and application of FST was to quantify visual thresholds in LCA, there are rare opportunities for FST also to be used beyond LCA to measure aspects of vision in other inherited retinal degenerations; examples are given. The main goal of the current review, however, remains to enable investigators studying and treating LCA to understand how to best use FST and how to reduce artefact and confounding complexities so the test results become more valuable to the understanding of LCA diseases and results of novel interventions.


Subject(s)
Eye Diseases, Hereditary , Leber Congenital Amaurosis , Retinal Dystrophies , Child , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/therapy , Mutation , Outcome Assessment, Health Care , Retina
19.
Am J Ophthalmol ; 233: 78-89, 2022 01.
Article in English | MEDLINE | ID: mdl-34298008

ABSTRACT

PURPOSE: Stargardt disease type 1 (STGD1) is the most common macular dystrophy. The assessment of fixation describes an important dimension of visual function, but data on its progression over time are limited. We present longitudinal changes and investigate its usefulness for clinical trials. DESIGN: International, multicenter, prospective cohort study. METHODS: Included were 239 individuals with genetically confirmed STGD1 (one or more disease-causing ATP binding cassette subfamily A member 4 [ABCA4] variant). We determined the fixation stability (FS) using 1 SD of the bivariate contour ellipse area (1 SD-BCEA) and fixation location (FL) using the eccentricity of fixation from the fovea during five study visits every 6 months. RESULTS: At baseline, 239 patients (105 males [44%]) and 459 eyes, with a median age of 32 years, were included. The baseline mean logBCEA was 0.70 ± 1.41 log deg2 and the mean FL was 6.25° ± 4.40°. Although the mean logBCEA did not monotonically increase from visit to visit, the overall yearly increase in the logBCEA was 0.124 log deg2 (95% CI, 0.063-0.185 log deg2). The rate of change was not different between the 2 years but increased faster in eyes without flecks outside of the vascular arcades and depended on baseline logBCEA. FL did not change statistically significantly over time. CONCLUSIONS: Fixation parameters are unlikely to be sensitive outcome measures for clinical trials in STGD1 but may provide useful ancillary information in selected cases to longitudinally describe and understand an eye's visual function.


Subject(s)
ATP-Binding Cassette Transporters , Retina , Adult , Disease Progression , Female , Humans , Male , Prospective Studies , Stargardt Disease , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...