Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
HardwareX ; 18: e00527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38596662

ABSTRACT

The engineering of new 3D bioprinting approaches has shown great promise in the field of tissue engineering and disease modelling. However, the high cost of commercial 3D bioprinters has limited their accessibility, especially to those laboratories in resource-limited settings. Moreover, the need for a 3D bioprinting system capable of dispensing multiple materials is growing apace. Therefore, the development of a Microfluidic-assisted Open Source 3D bioprinting System (MOS3S) for the engineering of hierarchical tissues is needed to progress in fabricating functional tissues, but with a technology accessible to a wider range of researchers. The MOS3S platform is designed to allow the deposition of biomaterial inks using microfluidic printheads or coaxial nozzles for the in-situ crosslinking and scaffolds fabrication. The coupling of 3D printed syringe pumps with the motion control system is used for driving the tunable extrusion of inks for the fabrication of centimeter scale hierarchical lattice constructs for tissue engineering purposes. MOS3S performance have been validated to fabricate high-resolution structures with coaxial microfluidic technology, opening to new frontiers for seminal studies in pre-clinical disease modelling and tissue regeneration.

2.
Biodes Manuf ; 7(2): 121-136, 2024.
Article in English | MEDLINE | ID: mdl-38497056

ABSTRACT

Autograft or metal implants are routinely used in skeletal repair. However, they fail to provide long-term clinical resolution, necessitating a functional biomimetic tissue engineering alternative. The use of native human bone tissue for synthesizing a biomimetic material ink for three-dimensional (3D) bioprinting of skeletal tissue is an attractive strategy for tissue regeneration. Thus, human bone extracellular matrix (bone-ECM) offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells (HBMSCs) to proliferate and differentiate along the osteogenic lineage. In this study, we engineered a novel material ink (LAB) by blending human bone-ECM (B) with nanoclay (L, Laponite®) and alginate (A) polymers using extrusion-based deposition. The inclusion of the nanofiller and polymeric material increased the rheology, printability, and drug retention properties and, critically, the preservation of HBMSCs viability upon printing. The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor (VEGF) enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane (CAM) model. The inclusion of bone morphogenetic protein-2 (BMP-2) with the HBMSCs further enhanced vascularization and mineralization after only seven days. This study demonstrates the synergistic combination of nanoclay with biomimetic materials (alginate and bone-ECM) to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair. Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-023-00265-z.

3.
Pestic Biochem Physiol ; 198: 105722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225077

ABSTRACT

The agricultural sector is currently confronted with a significant crisis stemming from the rapid changes in climate patterns, declining soil fertility, insufficient availability of essential macro and micronutrients, excessive reliance on chemical fertilizers and pesticides, and the presence of heavy metals in soil. These numerous challenges pose a considerable threat to the agriculture industry. Furthermore, the exponential growth of the global population has led to a substantial increase in food consumption, further straining agricultural systems worldwide. Nanotechnology holds great promise in revolutionizing the food and agriculture industry, decreasing the harmful effects of agricultural practices on the environment, and improving productivity. Nanomaterials such as inorganic, lipid, and polymeric nanoparticles have been developed for increasing productivity due to their unique properties. Various strategies can enhance product quality, such as the use of nano-clays, nano zeolites, and hydrogel-based materials to regulate water absorption and release, effectively mitigating water scarcity. The production of nanoparticles can be achieved through various methods, each of which has its own unique benefits and limitations. Among these methods, chemical synthesis is widely favored due to the impact that various factors such as concentration, particle size, and shape have on product quality and efficiency. This review provides a detailed examination of the roles of nanotechnology and nanoparticles in sustainable agriculture, including their synthetic methods, and presents an analysis of their associated advantages and disadvantages. To date, there are serious concerns and awareness about healthy agriculture and the production of healthy products, therefore the development of nanotech-enabled devices that act as preventive and early warning systems to identify health issues, offering remedial measures is necessary.


Subject(s)
Agriculture , Pesticides , Agriculture/methods , Pesticides/chemistry , Fertilizers/analysis , Soil , Nanotechnology/methods
4.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763926

ABSTRACT

Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations.

5.
Gels ; 9(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37504474

ABSTRACT

Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.

6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445940

ABSTRACT

Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Animals , Humans , Brain/metabolism , Neurodegenerative Diseases/metabolism , Organoids
7.
Front Mol Biosci ; 10: 1205919, 2023.
Article in English | MEDLINE | ID: mdl-37441163

ABSTRACT

The continuous emergence of novel variants represents one of the major problems in dealing with the SARS-CoV-2 virus. Indeed, also due to its prolonged circulation, more than ten variants of concern emerged, each time rapidly overgrowing the current viral version due to improved spreading features. As, up to now, all variants carry at least one mutation on the spike Receptor Binding Domain, the stability of the binding between the SARS-CoV-2 spike protein and the human ACE2 receptor seems one of the molecular determinants behind the viral spreading potential. In this framework, a better understanding of the interplay between spike mutations and complex stability can help to assess the impact of novel variants. Here, we characterize the peculiarities of the most representative variants of concern in terms of the molecular interactions taking place between the residues of the spike RBD and those of the ACE2 receptor. To do so, we performed molecular dynamics simulations of the RBD-ACE2 complexes of the seven variants of concern in comparison with a large set of complexes with different single mutations taking place on the RBD solvent-exposed residues and for which the experimental binding affinity was available. Analyzing the strength and spatial organization of the intermolecular interactions of the binding region residues, we found that (i) mutations producing an increase of the complex stability mainly rely on instaurating more favorable van der Waals optimization at the cost of Coulombic ones. In particular, (ii) an anti-correlation is observed between the shape and electrostatic complementarities of the binding regions. Finally, (iii) we showed that combining a set of dynamical descriptors is possible to estimate the outcome of point mutations on the complex binding region with a performance of 0.7. Overall, our results introduce a set of dynamical observables that can be rapidly evaluated to probe the effects of novel isolated variants or different molecular systems.

8.
Biomimetics (Basel) ; 8(2)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37366855

ABSTRACT

Osteochondral tissue (OC) is a complex and multiphasic system comprising cartilage and subchondral bone. The discrete OC architecture is layered with specific zones characterized by different compositions, morphology, collagen orientation, and chondrocyte phenotypes. To date, the treatment of osteochondral defects (OCD) remains a major clinical challenge due to the low self-regenerative capacity of damaged skeletal tissue, as well as the critical lack of functional tissue substitutes. Current clinical approaches fail to fully regenerate damaged OC recapitulating the zonal structure while granting long-term stability. Thus, the development of new biomimetic treatment strategies for the functional repair of OCDs is urgently needed. Here, we review recent developments in the preclinical investigation of novel functional approaches for the resurfacing of skeletal defects. The most recent studies on preclinical augmentation of OCDs and highlights on novel studies for the in vivo replacement of diseased cartilage are presented.

9.
In Vitro Model ; 1(4-5): 289-307, 2022.
Article in English | MEDLINE | ID: mdl-36567849

ABSTRACT

Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract: Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.

10.
Biofabrication ; 14(4)2022 09 16.
Article in English | MEDLINE | ID: mdl-36007496

ABSTRACT

In most cases, bone injuries heal without complications, however, there is an increasing number of instances where bone healing needs major clinical intervention. Available treatment options have severe drawbacks, such as donor site morbidity and limited availability for autografting. Bone graft substitutes containing growth factors would be a viable alternative, however they have been associated with dose-related safety concerns and lack control over spatial architecture to anatomically match bone defect sites. A 3D printing offers a solution to produce patient specific bone graft substitutes that are customized to the patient bone defect with temporal control over the incorporated therapeutics to maximize their efficacy. Inspired by the natural constitution of bone tissue, composites made of inorganic phases, such as nanosilicate particles, calcium phosphate, and bioactive glasses, combined with biopolymer matrices have been investigated as building blocks for the biofabrication of bone constructs. Besides capturing elements of the bone physiological structure, these inorganic/organic composites can be designed for specific cohesivity, rheological and mechanical properties, while both inorganic and organic constituents contribute to the composite bioactivity. This review provides an overview of 3D printed composite biomaterial-inks for bone tissue engineering. Furthermore, key aspects in biomaterial-ink design, 3D printing techniques, and the building blocks for composite biomaterial-inks are summarized.


Subject(s)
Bone Substitutes , Tissue Scaffolds , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biopolymers , Bone Regeneration , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Humans , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
11.
ACS Nano ; 15(7): 11202-11217, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34180656

ABSTRACT

Synthetic nanostructured materials incorporating both organic and inorganic components offer a unique, powerful, and versatile class of materials for widespread applications due to the distinct, yet complementary, nature of the intrinsic properties of the different constituents. We report a supramolecular system based on synthetic nanoclay (Laponite, Lap) and peptide amphiphiles (PAs, PAH3) rationally designed to coassemble into nanostructured hydrogels with high structural integrity and a spectrum of bioactivities. Spectroscopic and scattering techniques and molecular dynamic simulation approaches were harnessed to confirm that PAH3 nanofibers electrostatically adsorbed and conformed to the surface of Lap nanodisks. Electron and atomic force microscopies also confirmed an increase in diameter and surface area of PAH3 nanofibers after coassembly with Lap. Dynamic oscillatory rheology revealed that the coassembled PAH3-Lap hydrogels displayed high stiffness and robust self-healing behavior while gas adsorption analysis confirmed a hierarchical and heterogeneous porosity. Furthermore, this distinctive structure within the three-dimensional (3D) matrix provided spatial confinement for the nucleation and hierarchical organization of high-aspect ratio hydroxyapatite nanorods into well-defined spherical clusters within the 3D matrix. Applicability of the organic-inorganic PAH3-Lap hydrogels was assessed in vitro using human bone marrow-derived stromal cells (hBMSCs) and ex vivo using a chick chorioallantoic membrane (CAM) assay. The results demonstrated that the organic-inorganic PAH3-Lap hydrogels promote human skeletal cell proliferation and, upon mineralization, integrate with the CAM, are infiltrated by blood vessels, stimulate extracellular matrix production, and facilitate extensive mineral deposition relative to the controls.


Subject(s)
Mesenchymal Stem Cells , Nanofibers , Humans , Hydrogels/chemistry , Durapatite/chemistry , Nanofibers/chemistry , Rheology
12.
Methods Mol Biol ; 2147: 63-72, 2021.
Article in English | MEDLINE | ID: mdl-32840811

ABSTRACT

Biofabrication is revolutionizing substitute tissue manufacturing. Skeletal stem cells (SSCs) can be blended with hydrogel biomaterials and printed to form three-dimensional structures that can closely mimic tissues of interest. Our bioink formulation takes into account the potential for cell printing including a bioink nanocomposite that contains low fraction polymeric content to facilitate cell encapsulation and survival, while preserving hydrogel integrity and mechanical properties following extrusion. Clay inclusion to the nanocomposite strengthens the alginate-methylcellulose network providing a biopaste with unique shear-thinning properties that can be easily prepared under sterile conditions. SSCs can be mixed with the clay-based paste, and the resulting bioink can be printed in 3D structures ready for implantation. In this chapter, we provide the methodology for preparation, encapsulation, and printing of SSCs in a unique clay-based bioink.


Subject(s)
Bioprinting/methods , Bone Regeneration/physiology , Clay/chemistry , Nanocomposites/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Bone Substitutes/chemical synthesis , Bone Substitutes/chemistry , Bone and Bones/cytology , Bone and Bones/physiology , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cells, Cultured , Humans , Ink , Microtechnology/methods , Printing, Three-Dimensional , Silicates/chemistry , Stem Cells/cytology , Stem Cells/physiology , Tissue Engineering/instrumentation
13.
Am J Physiol Cell Physiol ; 319(3): C465-C480, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32639873

ABSTRACT

Bioprinting aims to direct the spatial arrangement in three dimensions of cells, biomaterials, and growth factors. The biofabrication of clinically relevant constructs for the repair or modeling of either diseased or damaged tissues is rapidly advancing, resulting in the ability to three-dimensional (3D) print biomimetic platforms which imitate a large number of tissues in the human body. Primary tissue-specific cells are typically isolated from patients and used for the fabrication of 3D models for drug screening or tissue repair purposes. However, the lack of resilience of these platforms, due to the difficulties in harnessing, processing, and implanting patient-specific cells can limit regeneration ability. The printing of stem cells obviates these hurdles, producing functional in vitro models or implantable constructs. Advancements in biomaterial science are helping the development of inks suitable for the encapsulation and the printing of stem cells, promoting their functional growth and differentiation. This review specifically aims to investigate the most recent studies exploring innovative and functional approaches for the printing of 3D constructs to model disease or repair damaged tissues. Key concepts in tissue physiology are highlighted, reporting stem cell applications in biofabrication. Bioprinting technologies and biomaterial inks are listed and analyzed, including recent advancements in biomaterial design for bioprinting applications, commenting on the influence of biomaterial inks on the encapsulated stem cells. Ultimately, most recent successful efforts and clinical potentials for the manufacturing of functional physiological tissue substitutes are reported here, with a major focus on specific tissues, such as vasculature, heart, lung and airways, liver, bone and muscle.


Subject(s)
Bioprinting , Stem Cells/cytology , Tissue Engineering , Bioprinting/methods , Cell Differentiation/physiology , Humans , Ink , Organ Culture Techniques/methods , Tissue Engineering/methods
14.
Biofabrication ; 12(3): 035010, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32259804

ABSTRACT

Acellular soft hydrogels are not ideal for hard tissue engineering given their poor mechanical stability, however, in combination with cellular components offer significant promise for tissue regeneration. Indeed, nanocomposite bioinks provide an attractive platform to deliver human bone marrow stromal cells (HBMSCs) in three dimensions producing cell-laden constructs that aim to facilitate bone repair and functionality. Here we present the in vitro, ex vivo and in vivo investigation of bioprinted HBMSCs encapsulated in a nanoclay-based bioink to produce viable and functional three-dimensional constructs. HBMSC-laden constructs remained viable over 21 d in vitro and immediately functional when conditioned with osteogenic media. 3D scaffolds seeded with human umbilical vein endothelial cells (HUVECs) and loaded with vascular endothelial growth factor (VEGF) implanted ex vivo into a chick chorioallantoic membrane (CAM) model showed integration and vascularisation after 7 d of incubation. In a pre-clinical in vivo application of a nanoclay-based bioink to regenerate skeletal tissue, we demonstrated bone morphogenetic protein-2 (BMP-2) absorbed scaffolds produced extensive mineralisation after 4 weeks (p < 0.0001) compared to the drug-free and alginate controls. In addition, HBMSC-laden 3D printed scaffolds were found to significantly (p < 0.0001) support bone tissue formation in vivo compared to acellular and cast scaffolds. These studies illustrate the potential of nanoclay-based bioink, to produce viable and functional constructs for clinically relevant skeletal tissue regeneration.


Subject(s)
Bone and Bones/blood supply , Clay/chemistry , Minerals/metabolism , Nanocomposites/chemistry , Neovascularization, Physiologic , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone and Bones/drug effects , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Chickens , Chorioallantoic Membrane/drug effects , Humans , Implants, Experimental , Mice , Models, Animal , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Silicates/chemistry , Subcutaneous Tissue/drug effects
15.
Biofabrication ; 11(3): 035027, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30991370

ABSTRACT

Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, advanced bioinks encapsulating living cells should: (i) present optimal rheological properties and retain 3D structure post fabrication, (ii) promote cell viability and support cell differentiation, and (iii) localise proteins of interest (e.g. vascular endothelial growth factor (VEGF)) to stimulate encapsulated cell activity and tissue ingrowth upon implantation. In this study, we present the results of the inclusion of a synthetic nanoclay, Laponite® (LPN) together with a gelatin methacryloyl (GelMA) bioink and the development of a functional cell-instructive bioink. A nanocomposite bioink displaying enhanced shape fidelity retention and interconnected porosity within extrusion-bioprinted fibres was observed. Human bone marrow stromal cell (HBMSC) viability within the nanocomposite showed no significant changes over 21 days of culture in LPN-GelMA (85.60 ± 10.27%), compared to a significant decrease in GelMA from 7 (95.88 ± 2.90%) to 21 days (55.54 ± 14.72%) (p < 0.01). HBMSCs were observed to proliferate in LPN-GelMA with a significant increase in cell number over 21 days (p < 0.0001) compared to GelMA alone. HBMSC-laden LPN-GelMA scaffolds supported osteogenic differentiation evidenced by mineralised nodule formation, including in the absence of the osteogenic drug dexamethasone. Ex vivo implantation in a chick chorioallantoic membrane model, demonstrated excellent integration of the bioink constructs in the vascular chick embryo after 7 days of incubation. VEGF-loaded LPN-GelMA constructs demonstrated significantly higher vessel penetration than GelMA-VEGF (p < 0.0001) scaffolds. Integration and vascularisation was directly related to increased drug absorption and retention by LPN-GelMA compared to LPN-free GelMA. In summary, a novel light-curable nanocomposite bioink for 3D skeletal regeneration supportive of cell growth and growth factor retention and delivery, evidenced by ex vivo vasculogenesis, was developed with potential application in hard and soft tissue reparation.


Subject(s)
Gelatin/chemistry , Ink , Nanocomposites/chemistry , Neovascularization, Physiologic , Osteogenesis , Silicates/chemistry , Animals , Bioprinting , Cattle , Cell Proliferation , Cell Survival , Chickens , Chorioallantoic Membrane/metabolism , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Methacrylates/chemistry , Muramidase/metabolism , Porosity , Serum Albumin, Bovine/metabolism , Swine , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL