Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 70(1): 307-318, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38175595

ABSTRACT

BACKGROUND: The phenotypes of tumor cells change during disease progression, but invasive rebiopsies of metastatic lesions are not always feasible. Here we aimed to determine whether initially HER2-negative metastatic breast cancer (MBC) patients with HER2-positive circulating tumor cells (CTCs) benefit from a HER2-targeted therapy. METHODS: The open-label, interventional randomized phase III clinical trial (EudraCT Number 2010-024238-46, CliniclTrials.gov Identifier: NCT01619111) recruited from March 2012 until September 2019 with a follow-up duration of 19.5 months. It was a multicenter clinical trial with 94 participating German study centers. A total of 2137 patients with HER2-negative MBC were screened for HER2-positive CTCs with a final modified intention-to-treat population of 101 patients. Eligible patients were randomized to standard therapy with or without lapatinib. Primary study endpoints included CTC clearance (no CTCs at the end of treatment) and secondary endpoints were progression-free survival, overall survival (OS), and safety. RESULTS: In both treatment arms CTC clearance at first follow-up visit-although not being significantly different for both arms at any time point-was significantly associated with improved OS (42.4 vs 14.1 months; P = 0.002). Patients treated additionally with lapatinib had a significantly improved OS over patients receiving standard treatment (20.5 vs 9.1 months, P = 0.009). CONCLUSIONS: DETECT III is the first clinical study indicating that phenotyping of CTCs might have clinical utility for stratification of MBC cancer patients to HER2-targeting therapies. The OS benefit could be related to lapatinib, but further studies are required to prove this clinical observation. ClinicalTrials.gov Registration Number: NCT01619111.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Female , Humans , Breast Neoplasms/drug therapy , Disease Progression , Kinetics
2.
Cytometry A ; 105(4): 242-251, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38054742

ABSTRACT

Circulating tumor cells (CTCs) are constantly shed by tumor tissue and can serve as a valuable analyte for a gene expression analysis from a liquid biopsy. However, a high proportion of CTCs can be apoptotic leading to rapid mRNA decay and challenging the analysis of their transcriptome. We established a workflow to enrich, to identify, and to isolate single CTCs including the discrimination of apoptotic and non-apoptotic CTCs for further single CTC transcriptome analysis. Viable tumor cells-we first used cells from breast cancer cell lines followed by CTCs from metastatic breast cancer patients-were enriched with the CellSearch system from diagnostic leukapheresis products, identified by immunofluorescence analysis for neoplastic markers, and isolated by micromanipulation. Then, their cDNA was generated, amplified, and sequenced. In order to exclude early apoptotic tumor cells, staining with Annexin V coupled to a fluorescent dye was used. Annexin V staining intensity was associated with decreased RNA integrity as well as lower numbers of total reads, exon reads, and detected genes in cell line cells and CTCs. A comparative RNA analysis of single cells from MDA-MB-231 and MCF7 cell lines revealed the expected differential transcriptome profiles. Enrichment and staining procedures of cell line cells that were spiked into blood had only little effect on the obtained RNA sequencing data compared to processing of naïve cells. Further, the detection of transcripts of housekeeping genes such as GAPDH was associated with a significantly higher quality of expression data from CTCs. This workflow enables the enrichment, detection, and isolation of single CTCs for individual transcriptome analyses. The discrimination of apoptotic and non-apoptotic cells allows to focus on CTCs with a high RNA integrity to ensure a successful transcriptome analysis.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/pathology , Workflow , Annexin A5 , Breast Neoplasms/pathology , Sequence Analysis, RNA , RNA , Biomarkers, Tumor
3.
Geburtshilfe Frauenheilkd ; 82(2): 181-205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35197803

ABSTRACT

Aim This is an update of the interdisciplinary S3-guideline on the Diagnosis, Therapy and Follow-up of Cervical Cancer (AWMF Registry No. 032/033OL), published in March 2021. The work on the updated guideline was funded by German Cancer Aid (Deutsche Krebshilfe) as part of the German Guideline Program in Oncology. The guideline was coordinated by the German Society of Gynecology and Obstetrics ( Deutsche Gesellschaft für Gynäkologie und Geburtshilfe , DGGG) and the Working Group on Gynecological Oncology ( Arbeitsgemeinschaft Gynäkologische Onkologie , AGO) of the German Cancer Society ( Deutsche Krebsgesellschaft , DKG). Method The process used to update the 2014 S3-guideline was based on an appraisal of the available evidence using the criteria of evidence-based medicine, adaptations of existing evidence-based national and international guidelines or - if evidence was lacking - on the consensus of the specialists involved in compiling the update. After an initial review of the current literature was carried out according to a prescribed algorithm, several areas were identified which, in contrast to the predecessor version from September 2014, required new recommendations or statements which would take account of more recently published literature and the recent appraisal of new evidence. Recommendations The short version of this guideline consists of recommendations and statements on palliative therapy and follow-up of patients with cervical cancer. The most important aspects included in this updated guideline are the new FIGO classification published in 2018, the radical open surgery approach used to treat cervical cancer up to FIGO stage IB1, and the use of the sentinel lymph node technique for tumors ≤ 2 cm. Other changes include the use of PET-CT, new options in radiotherapy (e.g., intensity-modulated radiotherapy, image-guided adaptive brachytherapy), and drug therapies to treat recurrence or metastasis.

4.
Geburtshilfe Frauenheilkd ; 82(2): 139-180, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169387

ABSTRACT

Aim This update of the interdisciplinary S3 guideline on the Diagnosis, Therapy and Follow-up of Cervical Cancer (AWMF Registry No. 032/033OL) was published in March 2021. This updated guideline was funded by German Cancer Aid (Deutsche Krebshilfe) as part of the German Guideline Program in Oncology. The guideline was coordinated by the German Society of Gynecology and Obstetrics ( Deutsche Gesellschaft für Gynäkologie und Geburtshilfe , DGGG) and the Working Group on Gynecological Oncology ( Arbeitsgemeinschaft Gynäkologische Onkologie , AGO) of the German Cancer Society ( Deutsche Krebsgesellschaft , DKG). Method The process of updating the S3 guideline dating from 2014 was based on an appraisal of the available evidence using the criteria of evidence-based medicine, adaptations of existing evidence-based national and international guidelines or - if evidence was lacking - on a consensus of the specialists involved in compiling the update. After an initial review of the current literature was carried out according to a prescribed algorithm, several areas were identified which, in contrast to the predecessor version from September 2014, required new recommendations or statements which took account of more recently published literature and the appraisal of the new evidence. Recommendations The short version of this guideline consists of recommendations and statements on the epidemiology, screening, diagnostic workup and therapy of patients with cervical cancer. The most important new aspects included in this updated guideline include the newly published FIGO classification of 2018, the radical open surgery approach for cervical cancers up to FIGO stage IB1, and use of the sentinel lymph node technique for tumors ≤ 2 cm. Other changes include the use of PET-CT, new options in radiotherapy (e.g., intensity-modulated radiotherapy, image-guided adaptive brachytherapy), and drug therapies to treat recurrence or metastasis.

5.
Cancers (Basel) ; 13(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885114

ABSTRACT

BACKGROUND: The analysis of liquid biopsies, e.g., circulating tumor cells (CTCs) is an appealing diagnostic concept for targeted therapy selection. In this proof-of-concept study, we aimed to perform multiparametric analyses of CTCs to select targeted therapies for metastatic breast cancer patients. METHODS: First, CTCs of five metastatic breast cancer patients were analyzed by whole exome sequencing (WES). Based on the results, one patient was selected and monitored by longitudinal and multiparametric liquid biopsy analyses over more than three years, including WES, RNA profiling, and in vitro drug testing of CTCs. RESULTS: Mutations addressable by targeted therapies were detected in all patients, including mutations that were not detected in biopsies of the primary tumor. For the index patient, the clonal evolution of the tumor cells was retraced and resistance mechanisms were identified. The AKT1 E17K mutation was uncovered as the driver of the metastatic process. Drug testing on the patient's CTCs confirmed the efficacy of drugs targeting the AKT1 pathway. During a targeted therapy chosen based on the CTC characterization and including the mTOR inhibitor everolimus, CTC numbers dropped by 97.3% and the disease remained stable as determined by computer tomography/magnetic resonance imaging. CONCLUSION: These results illustrate the strength of a multiparametric CTC analysis to choose and validate targeted therapies to optimize cancer treatment in the future. Furthermore, from a scientific point of view, such studies promote the understanding of the biology of CTCs during different treatment regimens.

7.
Breast Cancer Res ; 22(1): 75, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660617

ABSTRACT

BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.


Subject(s)
Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Receptors, Progesterone/metabolism , Animals , Apoptosis/physiology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis , Cell Proliferation/physiology , Disease Progression , Female , Heterografts , Homeostasis , Humans , Lipid Metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...