Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BMC Med ; 21(1): 392, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37915050

ABSTRACT

BACKGROUND: Sepsis is characterized by a dysregulated immune response and metabolic alterations, including decreased high-density lipoprotein cholesterol (HDL-C) levels. HDL exhibits beneficial properties, such as lipopolysaccharides (LPS) scavenging, exerting anti-inflammatory effects and providing endothelial protection. We investigated the effects of CER-001, an engineered HDL-mimetic, in a swine model of LPS-induced acute kidney injury (AKI) and a Phase 2a clinical trial, aiming to better understand its molecular basis in systemic inflammation and renal function. METHODS: We carried out a translational approach to study the effects of HDL administration on sepsis. Sterile systemic inflammation was induced in pigs by LPS infusion. Animals were randomized into LPS (n = 6), CER20 (single dose of CER-001 20 mg/kg; n = 6), and CER20 × 2 (two doses of CER-001 20 mg/kg; n = 6) groups. Survival rate, endothelial dysfunction biomarkers, pro-inflammatory mediators, LPS, and apolipoprotein A-I (ApoA-I) levels were assessed. Renal and liver histology and biochemistry were analyzed. Subsequently, we performed an open-label, randomized, dose-ranging (Phase 2a) study included 20 patients with sepsis due to intra-abdominal infection or urosepsis, randomized into Group A (conventional treatment, n = 5), Group B (CER-001 5 mg/kg BID, n = 5), Group C (CER-001 10 mg/kg BID, n = 5), and Group D (CER-001 20 mg/kg BID, n = 5). Primary outcomes were safety and efficacy in preventing AKI onset and severity; secondary outcomes include changes in inflammatory and endothelial dysfunction markers. RESULTS: CER-001 increased median survival, reduced inflammatory mediators, complement activation, and endothelial dysfunction in endotoxemic pigs. It enhanced LPS elimination through the bile and preserved liver and renal parenchyma. In the clinical study, CER-001 was well-tolerated with no serious adverse events related to study treatment. Rapid ApoA-I normalization was associated with enhanced LPS removal and immunomodulation with improvement of clinical outcomes, independently of the type and gravity of the sepsis. CER-001-treated patients had reduced risk for the onset and progression to severe AKI (stage 2 or 3) and, in a subset of critically ill patients, a reduced need for organ support and shorter ICU length of stay. CONCLUSIONS: CER-001 shows promise as a therapeutic strategy for sepsis management, improving outcomes and mitigating inflammation and organ damage. TRIAL REGISTRATION: The study was approved by the Agenzia Italiana del Farmaco (AIFA) and by the Local Ethic Committee (N° EUDRACT 2020-004202-60, Protocol CER-001- SEP_AKI_01) and was added to the EU Clinical Trials Register on January 13, 2021.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Animals , Swine , Lipoproteins, HDL , Apolipoprotein A-I/therapeutic use , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/pharmacology , Lipopolysaccharides , Translational Research, Biomedical , Inflammation , Sepsis/drug therapy , Acute Kidney Injury/drug therapy , Inflammation Mediators
2.
Eur J Intern Med ; 118: 108-117, 2023 12.
Article in English | MEDLINE | ID: mdl-37550110

ABSTRACT

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis and the role of IL-6 in pathogenesis is becoming increasingly important. A recent whole genome DNA methylation screening in IgAN patients identified a hypermethylated region comprising the non-coding RNA Vault RNA 2-1 (VTRNA2-1) that could explain the high IL-6 levels. METHODS: The pathway leading to IL-6 secretion controlled by VTRNA2-1, PKR, and CREB was analyzed in peripheral blood mononuclear cells (PBMCs) isolated from healthy subjects (HS), IgAN patients, transplanted patients with or without IgAN. The role of double and single-strand RNA in controlling the pathway was investigated. RESULTS: VTRNA2-1 was downregulated in IgAN compared to HS and in transplanted IgAN patients (TP-IgAN) compared to non-IgAN transplanted (TP). The loss of the VTRNA2-1 natural restrain in IgAN patients caused PKR hyperphosphorylation, and consequently the activation of CREB by PKR, which, in turn, led to high IL-6 production, both in IgAN and in TP-IgAN patients. IL-6 levels could be decreased by the PKR inhibitor imoxin. In addition, PKR is normally activated by bacterial and viral RNA, and we found that both the RNA poly(I:C), and the COVID-19 RNA-vaccine stimulation significantly increased the IL-6 levels in PBMCs from HS but had an opposite effect in those from IgAN patients. CONCLUSION: The discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide a novel approach to treating the disease and may be useful for the development of precision nephrology and personalized therapy by checking the VTRNA2-1 methylation level in IgAN patients.


Subject(s)
Glomerulonephritis, IGA , Humans , Glomerulonephritis, IGA/genetics , Immunoglobulin A , Interleukin-6 , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , RNA, Bacterial
3.
Toxins (Basel) ; 15(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36828429

ABSTRACT

During the past decades, the gut microbiome emerged as a key player in kidney disease. Dysbiosis-related uremic toxins together with pro-inflammatory mediators are the main factors in a deteriorating kidney function. The toxicity of uremic compounds has been well-documented in a plethora of pathophysiological mechanisms in kidney disease, such as cardiovascular injury (CVI), metabolic dysfunction, and inflammation. Accumulating data on the detrimental effect of uremic solutes in kidney disease supported the development of many strategies to restore eubiosis. Fecal microbiota transplantation (FMT) spread as an encouraging treatment for different dysbiosis-associated disorders. In this scenario, flourishing studies indicate that fecal transplantation could represent a novel treatment to reduce the uremic toxins accumulation. Here, we present the state-of-the-art concerning the application of FMT on kidney disease to restore eubiosis and reverse the retention of uremic toxins.


Subject(s)
Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Uremic Toxins , Fecal Microbiota Transplantation , Renal Insufficiency, Chronic/metabolism , Dysbiosis
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835304

ABSTRACT

The prokaryotic, viral, fungal, and parasitic microbiome exists in a highly intricate connection with the human host. In addition to eukaryotic viruses, due to the existence of various host bacteria, phages are widely spread throughout the human body. However, it is now evident that some viral community states, as opposed to others, are indicative of health and might be linked to undesirable outcomes for the human host. Members of the virome may collaborate with the human host to retain mutualistic functions in preserving human health. Evolutionary theories contend that a particular microbe's ubiquitous existence may signify a successful partnership with the host. In this Review, we present a survey of the field's work on the human virome and highlight the role of viruses in health and disease and the relationship of the virobiota with immune system control. Moreover, we will analyze virus involvement in glomerulonephritis and in IgA nephropathy, theorizing the molecular mechanisms that may be responsible for the crosslink with these renal diseases.


Subject(s)
Bacteriophages , Glomerulonephritis, IGA , Host Microbial Interactions , Virome , Humans , Glomerulonephritis, IGA/virology , Symbiosis
5.
Toxins (Basel) ; 14(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36136565

ABSTRACT

Fusarium Head Blight is a devastating disease of wheat caused by a complex of Fusarium species producing a wide range of mycotoxins. Fusarium species occurrence is variable in different geographical areas and subjected to a continuous evolution in their distribution. A total of 141 durum wheat field samples were collected in different regions of Italy in three years, and analyzed for Fusarium species and related mycotoxin occurrence. Mycotoxin contamination varied according to year and geographical origin. The highest mycotoxin contamination was detected in 2014. Deoxynivalenol was detected with an average of 240 µg/kg only in Central and Northern Italy; and T-2 and HT-2 toxins with an average of 150 µg/kg in Southern Italy. Approximately 80% of samples from Southern Italy in 2013/2014 showed T-2 and HT-2 levels over the EU recommended limits. Fusarium graminearum occurred mostly in Northern Italy, while F. langsethiae occurred in Southern Italy. These data showed that a real mycotoxin risk related to Fusarium exists on the whole in Italy, but varies according with geographical areas and environmental conditions. Consistent monitoring of Fusarium species and related mycotoxin distribution on a long period is worthwhile to generate more accurate knowledge on Fusarium species profile and mycotoxins associated and better establish the climatic change impact on wheat Fusarium epidemiology.


Subject(s)
Fusarium , Mycotoxins , T-2 Toxin , Edible Grain/chemistry , Food Contamination/analysis , Italy , Mycotoxins/analysis , T-2 Toxin/analysis , Trichothecenes , Triticum
6.
Front Nutr ; 9: 925619, 2022.
Article in English | MEDLINE | ID: mdl-35811945

ABSTRACT

Obesity is the epidemic of our era and its incidence is supposed to increase by more than 30% by 2030. It is commonly defined as a chronic and metabolic disease with an excessive accumulation of body fat in relation to fat-free mass, both in terms of quantity and distribution at specific points on the body. The effects of obesity have an important impact on different clinical areas, particularly endocrinology, cardiology, and nephrology. Indeed, increased rates of obesity have been associated with increased risk of cardiovascular disease (CVD), cancer, type 2 diabetes (T2D), dyslipidemia, hypertension, renal diseases, and neurocognitive impairment. Obesity-related chronic kidney disease (CKD) has been ascribed to intrarenal fat accumulation along the proximal tubule, glomeruli, renal sinus, and around the kidney capsule, and to hemodynamic changes with hyperfiltration, albuminuria, and impaired glomerular filtration rate. In addition, hypertension, dyslipidemia, and diabetes, which arise as a consequence of overweight, contribute to amplifying renal dysfunction in both the native and transplanted kidney. Overall, several mechanisms are closely related to the onset and progression of CKD in the general population, including changes in renal hemodynamics, neurohumoral pathways, renal adiposity, local and systemic inflammation, dysbiosis of microbiota, insulin resistance, and fibrotic process. Unfortunately, there are no clinical practice guidelines for the management of patients with obesity-related CKD. Therefore, dietary management is based on the clinical practice guidelines for the nutritional care of adults with CKD, developed and published by the National Kidney Foundation, Kidney Disease Outcome Quality Initiative and common recommendations for the healthy population. Optimal nutritional management of these patients should follow the guidelines of the Mediterranean diet, which is known to be associated with a lower incidence of CVD and beneficial effects on chronic diseases such as diabetes, obesity, and cognitive health. Mediterranean-style diets are often unsuccessful in promoting efficient weight loss, especially in patients with altered glucose metabolism. For this purpose, this review also discusses the use of non-classical weight loss approaches in CKD, including intermittent fasting and ketogenic diet to contrast the onset and progression of obesity-related CKD.

7.
Front Microbiol ; 10: 1386, 2019.
Article in English | MEDLINE | ID: mdl-31293538

ABSTRACT

Aflatoxin B1 (AfB1) is a carcinogenic mycotoxin that contaminates food and feed worldwide. We determined the AfB1-adsorption capability of non-viable Pleurotus eryngii mycelium, an edible fungus, as a potential means for removal of AfB1 from contaminated solutions. Lyophilized mycelium was produced and made enzymatically inert by sterilization at high temperatures. The material thus obtained was characterized by scanning electron microscopy with regard to the morpho-structural properties of the mycotoxin-adsorbing surfaces. The active surfaces appeared rough and sponge-like. The AfB1-mycelium system reached equilibrium at 37°C, 30 min, and pH 5-7, conditions that are compatible with the gastro-intestinal system of animals. The system remained stable for 48 h at room temperature, at pH 3, pH 7, and pH 7.4. A thermodynamic study of the process showed that this is a spontaneous and physical adsorption process, with a maximum of 85 ± 13% of removal efficiency of AfB1 by P. eryngii mycelium. These results suggest that biosorbent materials obtained from the mycelium of the mushroom P. eryngii could be used as a low-cost and effective feed additive for AfB1 detoxification.

8.
Food Microbiol ; 78: 62-72, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30497609

ABSTRACT

Cave cheese is a surface mold-ripened variety of cheese produced also in South of Italy, exploiting fungal population naturally occurring on cave walls, as part of secondary microbiota for ripening. In this study, 148 fungal strains were isolated from 22 independent cave cheese samples, collected in 13 Italian geographical locations, mostly in Apulian area. DNA-based identification showed the presence of twenty-four fungal species in the outer part of the cheese ripened in caves. Aspergillus westerdijkiae and Penicillium biforme resulted the most frequently isolated species, followed by Penicillium roqueforti and Penicillium solitum. The 86% of cheese sample presented at least one toxigenic species and the 45% revealed the presence of ochratoxigenic species, A. westerdijkiae and A. steynii, suggesting possible mycotoxin risk during ripening stage in caves, confirmed by the presence of ochratoxin A (OTA) in the rind of 36% of samples. In conclusion, cave cheese is a susceptible product for toxigenic mold growth and in particular OTA contamination, therefore adeguate scientific tools for matching organolectic consumer expectations and complete safety of food should be developed, as well as spontaneously molded and not monitored cheeses should not be consumed to avoid mycotoxin risk.


Subject(s)
Caves/microbiology , Cheese/microbiology , Fungi/growth & development , Microbiota/genetics , Mycotoxins/isolation & purification , Aspergillus/genetics , Aspergillus/growth & development , Aspergillus/isolation & purification , Aspergillus/physiology , Food Microbiology , Food Safety/methods , Fungi/genetics , Fungi/isolation & purification , Fungi/physiology , Humans , Italy , Mycotoxins/genetics , Ochratoxins/analysis , Penicillium/genetics , Penicillium/growth & development , Penicillium/isolation & purification , Penicillium/physiology
9.
PLoS One ; 12(8): e0182574, 2017.
Article in English | MEDLINE | ID: mdl-28771640

ABSTRACT

Aflatoxin B1 (AFB1) is the most harmful mycotoxin that occurs as natural contaminant of agricultural commodities, particularly maize. Practical solutions for detoxification of contaminated staples and reduction of agricultural wastes are scarce. We investigated the capability of the white-rot and edible fungus Plerotus eryngii (king oyster mushroom) to degrade AFB1 both in vitro and in a laboratory-scale mushroom cultivation, using a substrate similar to that routinely used in mushroom farms. In malt extract broth, degradation of AFB1 (500 ng/mL) by nine isolates of P. eryngii ranged from 81 to 99% after 10 days growth, and reached 100% for all isolates after 30 days. The growth of P. eryngii on solid medium (malt extract-agar, MEA) was significantly reduced at concentrations of AFB1 500 ng/mL or higher. However, the addition of 5% wheat straw to the culture medium increased the tolerance of P. eryngii to AFB1 and no inhibition was observed at a AFB1 content of 500 ng/mL; degradation of AFB1 in MEA supplemented with 5% wheat straw and 2.5% (w/v) maize flour was 71-94% after 30 days of growth. Further, AFB1 degradation by P. eryngii strain ITEM 13681 was tested in a laboratory-scale mushroom cultivation. The mushroom growth medium contained 25% (w/w) of maize spiked with AFB1 to the final content of 128 µg/kg. Pleurotus eryngii degraded up to 86% of the AFB1 in 28 days, with no significant reduction of either biological efficiency or mushroom yield. Neither the biomass produced on the mushroom substrate nor the mature basidiocarps contained detectable levels of AFB1 or its metabolite aflatoxicol, thus ruling out the translocation of these toxins through the fungal thallus. These findings make a contribution towards the development of a novel technology for remediation of AFB1- contaminated corn through the exploitation of the degradative capability of P. eryngii and its bioconversion into high nutritional value material intended for feed production.


Subject(s)
Aflatoxin B1/metabolism , Pleurotus/growth & development , Zea mays/microbiology , Biodegradation, Environmental , Culture Media/chemistry , Pleurotus/metabolism , Zea mays/chemistry , Zea mays/growth & development
10.
Colloids Surf B Biointerfaces ; 158: 387-396, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28719860

ABSTRACT

Titanium and its alloys are widely employed materials for implants in orthopedic or dental surgery due to their mechanical properties, resistance to corrosion and osseointegration capability. However adverse reactions at the tissue/implant interface may occur, which limit the success of the osseointegration process. Therefore, different strategies have to be used to overcome these drawbacks. In this work, we developed two different liposome-based coatings on titanium surfaces as drug or bioactive molecule deposits for dental/orthopedic implant applications. The first one is a supported vesicular layer (SVL), obtained by liposome adhesion on passivated Ti surface, the second one is a covalently bonded vesicular layer (CBVL) grafted on properly functionalized Ti. Photoluminescence spectroscopy and atomic force microscopy investigations demonstrated the effective anchoring of intact liposomes in both systems. Cytotoxicity assays, performed after 48h, showed a MG63 cell viability higher than 75% and 70% on SVLs and CBVLs, respectively. Scanning electron microscopy investigation revealed numerous and spread MG63 cells after 48h on SVL modified Ti surface and a lower cell adhesion on samples coated with CBVL. The cellular uptake capability of liposome content was proved by fluorescence microscopy using carboxyfluorescein loaded SVLs and CBVLs. Finally, we demonstrated that these liposome-modified Ti surfaces were able to deliver a model bioactive molecule (phosphatidylserine) to adherent cells, confirming the potentiality of developed systems in bone related prosthetic applications.


Subject(s)
Liposomes/chemistry , Titanium/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Humans , Microscopy, Electron, Scanning , Surface Properties
11.
Toxins (Basel) ; 9(2)2017 01 25.
Article in English | MEDLINE | ID: mdl-28125067

ABSTRACT

Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-l-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the ß strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN.


Subject(s)
Depsipeptides/biosynthesis , Fusarium/metabolism , Amino Acid Sequence , Chromatography, Liquid , Fusarium/classification , Fusarium/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Dynamics Simulation , Multivariate Analysis , Peptide Synthases/chemistry , Peptide Synthases/genetics , Peptide Synthases/metabolism , Protein Domains , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...