Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Genes Dev ; 38(1-2): 46-69, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38286657

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Subject(s)
Head and Neck Neoplasms , Histones , Humans , Histones/metabolism , Lysine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Methylation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Genomic Instability/genetics
2.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38076924

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.

3.
Cell Rep ; 42(1): 112027, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848231

ABSTRACT

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Subject(s)
Leukemia , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Synthetic Lethal Mutations , Vitamins
4.
Blood ; 141(19): 2359-2371, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36626250

ABSTRACT

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.


Subject(s)
Antineoplastic Agents , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasms, Second Primary , Humans , Melphalan , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Autologous/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplasms, Second Primary/chemically induced , Neoplasms, Second Primary/genetics , Antineoplastic Agents/pharmacology
5.
Blood Adv ; 7(8): 1560-1571, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36075025

ABSTRACT

Platelets have been shown to enhance the survival of lymphoma cell lines. However, it remains unclear whether they play a role in lymphoma. Here, we investigated the potential role of platelets and/or megakaryocytes in the progression of Eµ-myc lymphoma. Eµ-myc tumor cells were transplanted into recipient wild-type (WT) control, Mpl-/-, or TpoTg mice, which exhibited normal, low, and high platelet and megakaryocyte counts, respectively. TpoTg mice that underwent transplantation exhibited enhanced lymphoma progression with increased white blood cell (WBC) counts, spleen and lymph node weights, and enhanced liver infiltration when compared with WT mice. Conversely, tumor-bearing Mpl-/- mice had reduced WBC counts, lymph node weights, and less liver infiltration than WT mice. Using an Mpl-deficient thrombocytopenic immunocompromised mouse model, our results were confirmed using the human non-Hodgkin lymphoma GRANTA cell line. Although we found that platelets and platelet-released molecules supported Eµ-myc tumor cell survival in vitro, pharmacological inhibition of platelet function or anticoagulation in WT mice transplanted with Eµ-myc did not improve disease outcome. Furthermore, transient platelet depletion or sustained Bcl-xL-dependent thrombocytopenia did not alter lymphoma progression. Cytokine analysis of the bone marrow fluid microenvironment revealed increased levels of the proinflammatory molecule interleukin 1 in TpoTg mice, whereas these levels were lower in Mpl-/- mice. Moreover, RNA sequencing of blood-resident Eµ-myc lymphoma cells from TpoTg and WT mice after tumor transplantation revealed the upregulation of hallmark gene sets associated with an inflammatory response in TpoTg mice. We propose that the proinflammatory microenvironment in TpoTg mice promotes lymphoma progression.


Subject(s)
Lymphoma , Thrombocytopenia , Mice , Animals , Humans , Megakaryocytes/metabolism , Receptors, Thrombopoietin , Blood Platelets/metabolism , Thrombocytopenia/genetics , Lymphoma/genetics , Tumor Microenvironment
7.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: mdl-34622806

ABSTRACT

Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , p300-CBP Transcription Factors/genetics , Animals , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Disease Models, Animal , Disease Progression , Epigenesis, Genetic , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute/metabolism , Mice , Mutation , Myelodysplastic Syndromes/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Repressor Proteins/genetics , Serine-Arginine Splicing Factors/genetics , Survival Rate
8.
Elife ; 102021 08 11.
Article in English | MEDLINE | ID: mdl-34378531

ABSTRACT

Maintenance of immune homeostasis involves a synergistic relationship between the host and the microbiome. Canonical interferon (IFN) signaling controls responses to acute microbial infection, through engagement of the STAT1 transcription factor. However, the contribution of tonic levels of IFN to immune homeostasis in the absence of acute infection remains largely unexplored. We report that STAT1 KO mice spontaneously developed an inflammatory disease marked by myeloid hyperplasia and splenic accumulation of hematopoietic stem cells. Moreover, these animals developed inflammatory bowel disease. Profiling gut bacteria revealed a profound dysbiosis in the absence of tonic IFN signaling, which triggered expansion of TH17 cells and loss of splenic Treg cells. Reduction of bacterial load by antibiotic treatment averted the TH17 bias and blocking IL17 signaling prevented myeloid expansion and splenic stem cell accumulation. Thus, tonic IFNs regulate gut microbial ecology, which is crucial for maintaining physiologic immune homeostasis and preventing inflammation.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome , Inflammation/genetics , Interferons/administration & dosage , Interleukin-17/genetics , STAT1 Transcription Factor/genetics , Animals , Female , Interleukin-17/metabolism , Mice , Mice, Knockout , STAT1 Transcription Factor/metabolism
9.
Front Genet ; 12: 675780, 2021.
Article in English | MEDLINE | ID: mdl-34017357

ABSTRACT

DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.

10.
Clin Cancer Res ; 27(7): 1893-1903, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33495312

ABSTRACT

PURPOSE: In preclinical studies, the lysine-specific histone demethylase 1A (LSD1) inhibitor tranylcypromine (TCP) combined with all-trans retinoic acid (ATRA) induces differentiation and impairs survival of myeloid blasts in non-acute promyelocytic leukemia acute myeloid leukemia (AML). We conducted a phase I clinical trial (NCT02273102) to evaluate the safety and activity of ATRA plus TCP in patients with relapsed/refractory AML and myelodysplasia (MDS). PATIENTS AND METHODS: Seventeen patients were treated with ATRA and TCP (three dose levels: 10 mg twice daily, 20 mg twice daily, and 30 mg twice daily). RESULTS: ATRA-TCP had an acceptable safety profile. The MTD of TCP was 20 mg twice daily. Best responses included one morphologic leukemia-free state, one marrow complete remission with hematologic improvement, two stable disease with hematologic improvement, and two stable disease. By intention to treat, the overall response rate was 23.5% and clinical benefit rate was 35.3%. Gene expression profiling of patient blasts showed that responding patients had a more quiescent CD34+ cell phenotype at baseline, including decreased MYC and RARA expression, compared with nonresponders that exhibited a more proliferative CD34+ phenotype, with gene expression enrichment for cell growth signaling. Upon ATRA-TCP treatment, we observed significant induction of retinoic acid-target genes in responders but not nonresponders. We corroborated this in AML cell lines, showing that ATRA-TCP synergistically increased differentiation capacity and cell death by regulating the expression of key gene sets that segregate patients by their clinical response. CONCLUSIONS: These data indicate that LSD1 inhibition sensitizes AML cells to ATRA and may restore ATRA responsiveness in subsets of patients with MDS and AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Transcriptome , Tranylcypromine/administration & dosage , Tretinoin/administration & dosage , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Tretinoin/adverse effects
11.
Nutrients ; 12(9)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961717

ABSTRACT

Vitamins B9 (folate) and B12 are essential water-soluble vitamins that play a crucial role in the maintenance of one-carbon metabolism: a set of interconnected biochemical pathways driven by folate and methionine to generate methyl groups for use in DNA synthesis, amino acid homeostasis, antioxidant generation, and epigenetic regulation. Dietary deficiencies in B9 and B12, or genetic polymorphisms that influence the activity of enzymes involved in the folate or methionine cycles, are known to cause developmental defects, impair cognitive function, or block normal blood production. Nutritional deficiencies have historically been treated with dietary supplementation or high-dose parenteral administration that can reverse symptoms in the majority of cases. Elevated levels of these vitamins have more recently been shown to correlate with immune dysfunction, cancer, and increased mortality. Therapies that specifically target one-carbon metabolism are therefore currently being explored for the treatment of immune disorders and cancer. In this review, we will highlight recent studies aimed at elucidating the role of folate, B12, and methionine in one-carbon metabolism during normal cellular processes and in the context of disease progression.


Subject(s)
Folic Acid Deficiency/prevention & control , Folic Acid/pharmacology , One-Carbon Group Transferases/metabolism , Vitamin B 12 Deficiency/prevention & control , Vitamin B 12/pharmacology , Folic Acid Deficiency/genetics , Humans , Polymorphism, Genetic , Vitamin B 12 Deficiency/genetics
12.
Leuk Res Rep ; 13: 100204, 2020.
Article in English | MEDLINE | ID: mdl-32477862

ABSTRACT

Acute myeloid leukemia (AML) is defined by the presence of ≥ 20% myeloblasts in the blood or bone marrow. Spontaneous remission (SR) of AML is a rare event, with few cases described in the literature. SR is generally associated with recovery from an infectious or immunologic process, and more recently possibly with clonal hematopoiesis. We review the literature and assess the trends associated with SR, and report a new case of a 58-year-old man with a morphologic diagnosis of AML associated with a severe gastrointestinal (GI) tract infection. The patient had an NF1 variant that was previously unreported in AML as the only clonal abnormality.  After treatment of the infection, the increased blast population subsided with no leukemia-directed therapy, and the patient has remained in a continuous, spontaneous complete remission for > 2 years.

13.
Stem Cell Res Ther ; 11(1): 132, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32197634

ABSTRACT

Myelodysplastic syndrome (MDS) represents a heterogeneous group of clonal hematopoietic disorders, which is characterized by cytopenias in the peripheral blood and bone marrow dysplasia due to ineffective hematopoiesis. Patients with MDS have an increased risk of transformation to acute myeloid leukemia (AML). Although the molecular basis of MDS is heterogeneous, several studies demonstrated the significant contribution of the dysregulated immune system in accelerating MDS progression. The immunosuppressive tumor microenvironment is shown to induce tolerance of MDS blasts, which may result in a further accumulation of genetic aberrations and lead to the disease progression. Increasing evidence shows an expansion of myeloid-derived suppressor cells (MDSCs), a population of inflammation-associated immature cells, in patients with MDS. Interestingly, the increased MDSC populations are shown to be correlated with a risk of disease progression in MDS. In addition, MDS is highly prevalent in aged individuals with non-hematology co-morbidities who are fragile for chemotherapy. Increasing research effort is devoting to identify novel agents to specific targeting of the MDSC population for MDS treatment.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloid-Derived Suppressor Cells , Aged , Hematopoiesis , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Tumor Microenvironment
14.
Front Cell Dev Biol ; 7: 128, 2019.
Article in English | MEDLINE | ID: mdl-31380368

ABSTRACT

The erasure of epigenetic modifications across the genome of somatic cells is an essential requirement during their reprogramming into induced pluripotent stem cells (iPSCs). Vitamin C plays a pivotal role in remodeling the epigenome by enhancing the activity of Jumonji-C domain-containing histone demethylases (JHDMs) and the ten-eleven translocation (TET) proteins. By maintaining differentiation plasticity in culture, vitamin C also improves the quality of tissue specific stem cells derived from iPSCs that are highly sought after for use in regenerative medicine. The ability of vitamin C to potentiate the activity of histone and DNA demethylating enzymes also has clinical application in the treatment of cancer. Vitamin C deficiency has been widely reported in cancer patients and has recently been shown to accelerate cancer progression in disease models. Therapies involving high-dose vitamin C administration are currently gaining traction in the treatment of epigenetic dysregulation, by targeting aberrant histone and DNA methylation patterns associated with cancer progression.

15.
Cell Stem Cell ; 25(2): 258-272.e9, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31374198

ABSTRACT

Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML). Here, we show in murine and human models of AML that, upon perturbation of endogenous expression of the lineage-determining transcription factor PU.1 or withdrawal of established differentiation therapies, some mature leukemia cells can de-differentiate and reacquire clonogenic and leukemogenic properties. Our results reveal plasticity of CSC maturation in AML, highlighting the need to therapeutically eradicate cancer cells across a range of differentiation states.


Subject(s)
Cell Differentiation/physiology , Cell Transdifferentiation/physiology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/physiology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Carcinogenesis , Cell Plasticity , Cells, Cultured , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Tretinoin/metabolism
16.
Cancer Discov ; 8(12): 1632-1653, 2018 12.
Article in English | MEDLINE | ID: mdl-30274972

ABSTRACT

TET2 somatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype. TET2 loss was linked to focal loss of enhancer hydroxymethylation and transcriptional repression of genes that mediate GC exit, such as PRDM1. Notably, these enhancers and genes are also repressed in CREBBP-mutant DLBCLs. Accordingly, TET2 mutation in patients yields a CREBBP-mutant gene-expression signature, CREBBP and TET2 mutations are generally mutually exclusive, and hydroxymethylation loss caused by TET2 deficiency impairs enhancer H3K27 acetylation. Hence, TET2 plays a critical role in the GC reaction, and its loss of function results in lymphomagenesis through failure to activate genes linked to GC exit signals. SIGNIFICANCE: We show that TET2 is required for exit of the GC, B-cell differentiation, and is a tumor suppressor for mature B cells. Loss of TET2 phenocopies CREBBP somatic mutation. These results advocate for sequencing TET2 in patients with lymphoma and for the testing of epigenetic therapies to treat these tumors.See related commentary by Shingleton and Dave, p. 1515.This article is highlighted in the In This Issue feature, p. 1494.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Plasma Cells/metabolism , Proto-Oncogene Proteins/genetics , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic/genetics , Gene Expression Profiling/methods , Germinal Center/pathology , Hematopoietic Stem Cells/metabolism , Humans , Hyperplasia , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Knockout , Mice, Transgenic , Mutation , Plasma Cells/pathology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins/metabolism
17.
Trends Cell Biol ; 28(9): 698-708, 2018 09.
Article in English | MEDLINE | ID: mdl-29724526

ABSTRACT

Vitamin C is an essential dietary requirement for humans. In addition to its known role as an antioxidant, vitamin C is a cofactor for Fe2+- and α-ketoglutarate-dependent dioxygenases (Fe2+/α-KGDDs) which comprise a large number of diverse enzymes, including collagen prolyl hydroxylases and epigenetic regulators of histone and DNA methylation. Vitamin C can modulate embryonic stem cell (ESC) function, enhance reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs), and hinder the aberrant self-renewal of hematopoietic stem cells (HSCs) through its ability to enhance the activity of either Jumonji C (JmjC) domain-containing histone demethylases or ten-eleven translocation (TET) DNA hydroxylases. Given that epigenetic dysregulation is a known driver of malignancy, vitamin C may play a novel role as an epigenetic anticancer agent.


Subject(s)
Ascorbic Acid/metabolism , Cellular Reprogramming , Neoplasms/metabolism , Stem Cells/metabolism , Animals , Antioxidants/metabolism , Ascorbic Acid/biosynthesis , Epigenesis, Genetic , Humans , Neoplasms/pathology
18.
Biomaterials ; 161: 164-178, 2018 04.
Article in English | MEDLINE | ID: mdl-29421553

ABSTRACT

Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-ß1, and surface integrin (αvß3) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (αvß3)-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (αvß3) and cytokine receptor (TGFß-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and altered ECM. Hence, we provide an interactive and controllable GBM tumor microenvironment and highlight the importance of macrophage-associated immunosuppression in GBM angiogenesis, paving a new direction of screening novel anti-angiogenic therapies.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Glioblastoma/immunology , Glioblastoma/metabolism , Macrophages/metabolism , Animals , Cell Line, Tumor , Extracellular Matrix/metabolism , Macrophages/immunology , Mice , Microscopy, Confocal , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/metabolism , RAW 264.7 Cells , Signal Transduction/physiology
19.
Nat Commun ; 9(1): 222, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335468

ABSTRACT

Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases.


Subject(s)
Cytidine Deaminase/genetics , Epigenesis, Genetic , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cytidine Deaminase/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation
20.
Cell ; 170(6): 1079-1095.e20, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28823558

ABSTRACT

Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo. Treatment with vitamin C, a co-factor of Fe2+ and α-KG-dependent dioxygenases, mimics TET2 restoration by enhancing 5-hydroxymethylcytosine formation in Tet2-deficient mouse HSPCs and suppresses human leukemic colony formation and leukemia progression of primary human leukemia PDXs. Vitamin C also drives DNA hypomethylation and expression of a TET2-dependent gene signature in human leukemia cell lines. Furthermore, TET-mediated DNA oxidation induced by vitamin C treatment in leukemia cells enhances their sensitivity to PARP inhibition and could provide a safe and effective combination strategy to selectively target TET deficiency in cancer. PAPERCLIP.


Subject(s)
Ascorbic Acid/pharmacology , DNA-Binding Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Proto-Oncogene Proteins/metabolism , Vitamins/pharmacology , Animals , Ascorbic Acid/administration & dosage , Cell Death , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases , Gene Knockdown Techniques , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Myelodysplastic Syndromes/genetics , Neoplasm Transplantation , Poly (ADP-Ribose) Polymerase-1/genetics , Proto-Oncogene Proteins/genetics , Transcription, Genetic , Transplantation, Heterologous , Vitamins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...