Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 265: 116075, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38150963

ABSTRACT

The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.


Subject(s)
Antioxidants , NF-kappa B , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-kappa B/metabolism , Nitric Oxide , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Toll-Like Receptors , Immunity , Lipopolysaccharides
2.
Polymers (Basel) ; 15(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37112055

ABSTRACT

Due to the emergence of antibiotic-resistant pathogens, the need to find new, efficient antimicrobial agents is rapidly increasing. Therefore, in this study, we report the development of new biocomposites based on zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L. with good antimicrobial activity. Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) were used in order to evaluate their physico-chemical properties. Our studies revealed that biocomposite materials with nanometric dimension and homogeneous composition could be obtained through an economic and cost-effective synthesis method. The biological assays demonstrated that ZnHA (zinc-doped hydroxyapatite), ZnHACh (zinc-doped hydroxyapatite/chitosan) and ZnHAChT (zinc-doped hydroxyapatite/chitosan enriched with essential oil of Artemisia dracunculus L.) did not exhibit a toxic effect on the cell viability and proliferation of the primary osteoblast culture (hFOB 1.19). Moreover, the cytotoxic assay also highlighted that the cell morphology of the hFOB 1.19 was not altered in the presence of ZnHA, ZnHACh or ZnHAChT. Furthermore, the in vitro antimicrobial studies emphasized that the samples exhibited strong antimicrobial properties against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231 microbial strains. These results are encouraging for the following development of new composite materials with enhanced biological properties that could promote the osteogenic process of bone healing and also exhibit good antimicrobial properties.

3.
Foods ; 12(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613340

ABSTRACT

This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.

4.
Polymers (Basel) ; 13(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34301108

ABSTRACT

In the present study, we report the synthesis of a dextran coated iron oxide nanoparticles (DIO-NPs) thin layer on glass substrate by an adapted method. The surface morphology of the obtained samples was analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), optical, and metallographic microscopies. In addition, the distribution of the chemical elements into the DIO-NPs thin layer was analyzed by Glow Discharge Optical Emission Spectrometry (GDOES). Furthermore, the chemical bonds formed between the dextran and iron oxide nanoparticles was investigated by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, the HepG2 viability incubated with the DIO-NPs layers was evaluated at different time intervals using MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The goal of this study was to obtain a DIO-NPs thin layer which could be used as a coating for medical devices such as microfluidic channel, microchips, and catheter. The results of the surface morphology investigations conducted on DIO-NPs thin layer suggests the presence of a continuous and homogeneous layer. In addition, the GDOES results indicate the presence of C, H, Fe, and O signal intensities characteristic to the DIO-NPs layers. The presence in the IR spectra of the Fe-CO metal carbonyl vibration bonds prove that the linkage between iron oxide nanoparticles and dextran take place through carbon-oxygen bonds. The cytotoxicity assays highlighted that HepG2 cells morphology did not show any noticeable modifications after being incubated with DIO-NPs layers. In addition, the MTT assay suggested that the DIO-NPs layers did not present any toxic effects towards HEpG2 cells.

5.
Molecules ; 25(2)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963829

ABSTRACT

There is significant research showing that essential oils extracted from the plants have antibacterial effects. The purpose of this study was to develop a biocomposite based on hydroxyapatite coated with Artemisia absinthium essential oil and to highlight its antibacterial activity. Therefore, present studies are aimed at developing new materials combining hydroxyapatite with Artemisia absinthium essential oil, in order to avoid postoperative infections. The purpose of this work is to highlight the antimicrobial properties of the Artemisia absinthium essential oil-hydroxyapatite composites obtained by a simple method and at low costs. The structural properties and antimicrobial efficiency of the Artemisia absinthium essential oil-hydroxyapatite composite have been studied. The samples based on Artemisia absinthium essential oil analyzed in this study showed that wormwood essential oil presented the highest efficacy against the fungal strain of C. parapsilosis. It has been shown that wormwood essential oil has a strong antimicrobial effect against the microbial strains tested in this study. Furthermore, the antimicrobial properties of the biocomposites based on hydroxyapatite and essential oil are due to the presence of the essential oil in the samples.


Subject(s)
Artemisia absinthium/chemistry , Durapatite/chemistry , Dynamic Light Scattering , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oils, Volatile/analysis , Plant Roots/chemistry
6.
Eur J Med Chem ; 157: 1326-1345, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30196058

ABSTRACT

Oxidative decay and microbial spoilage are issues of concern, as they constitute threats to human health. Natural antioxidants and antimicrobials hamper the negative impact of synthetic compounds and they need appropriate delivery systems. Different nanostructures can be developed: association colloids-based nanostructures, nanoemulsions, nanoliposomes, nanolaminates, nanofibers, carbon nanotubes, nanocomposites. The main nanoencapsulation techniques applied to antioxidants and antimicrobials are described: association colloid-based nanoincorporation, lipid-based nanoencapsulation techniques, encapsulation techniques based on biologically-derived polymeric nanocarriers, encapsulation techniques based on non-biological polymeric nanocarriers, cyclodextrin incorporation, electrospraying and electrospinning, carbon nanotubes and nanocomposite encapsulation. Several nanoencapsulation methods can be followed by freeze-drying or spray-drying. Protection of bioactive compounds and controlled release are achieved, but the impact of the nanomaterials on human health and on the environment should be considered. The influence of the nanoencapsulation techniques on the antioxidant/antimicrobial activity is discussed. The choice of the appropriate encapsulation method is vital. Bioactivity increase, preservation or decrease, depend on the interactions established between the functional groups of encapsulated compound and the encapsulating nanomaterial.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Nanostructures/chemistry , Nanotechnology , Animals , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Humans
7.
Materials (Basel) ; 11(5)2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29695049

ABSTRACT

The research conducted in this study presented for the first time results of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatite plant essential oil against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus 0364) and Gram-negative bacteria (Escherichia coli ATCC 25922). The samples were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy to determine the morphology and structure of the nanocomposites of hydroxyapatite coated with basil (HAp-B) and lavender (HAp-L) essential oils (EOs). The values of the BET specific surface area (SBET), total pore volume (VP) and pore size (DP) were determined. The results for the physico-chemical properties of HAp-L and HAp-B revealed that lavender EOs were well adsorbed on the surface of hydroxyapatite, whereas basil EOs showed a poor adsorption on the surface of hydroxyapatite. We found that the lavender EOs hydroxyapatite (HAp-L) exhibited a very good inhibitory growth activity. The value of the minimum inhibitory concentration (MIC) related to growth bacteria was 0.039 mg/mL for MRSA, 0.02 mg/mL for S. aureus and 0.039 mg/mL E. coli ATCC 25922. The basil EO hydroxyapatite (HAp-B) showed poor inhibition of bacterial cell growth. The MIC value was 0.625 mg/mL for the HAp-B sample in the presence of the MRSA bacteria, 0.313 mg/mL in the presence of S. aureus and 0.078 mg/mL for E. coli ATCC 25922.

8.
BMC Complement Altern Med ; 18(1): 3, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29301523

ABSTRACT

BACKGROUND: Juniperus communis L. represents a multi-purpose crop used in the pharmaceutical, food, and cosmetic industry. Several studies present the possible medicinal properties of different Juniperus taxa native to specific geographical area. The present study aims to evaluate the genoprotective, antioxidant, antifungal and anti-inflammatory potential of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. METHODS: The prepared hydroethanolic extract of Juniperus communis L. was characterized by GC-MS, HPLC, UV-Vis spectrometry and phytochemical assays. The antioxidant potential was evaluated using the DPPH assay, the antifungal effect was studied on Aspergillus niger ATCC 15475 and Penicillium hirsutum ATCC 52323, while the genoprotective effect was evaluated using the Allium cepa assay. The anti-inflammatory effect was evaluated in two inflammation experimental models (dextran and kaolin) by plethysmometry. Male Wistar rats were treated by gavage with distilled water (negative control), the microemulsion (positive control), diclofenac sodium aqueous solution (reference) and microemulsions containing juniper extract (experimental group). The initial paw volume and the paw volumes at 1, 2, 3, 4, 5 and 24 h were measured. RESULTS: Total terpenoids, phenolics and flavonoids were estimated to be 13.44 ± 0.14 mg linalool equivalent, 19.23 ± 1.32 mg gallic acid equivalent, and 5109.6 ± 21.47 mg rutin equivalent per 100 g of extract, respectively. GC-MS characterization of the juniper extract identified 57 volatile compounds in the sample, while the HPLC analysis revealed the presence of the selected compounds (α-pinene, chlorogenic acid, rutin, apigenin, quercitin). The antioxidant potential of the crude extract was found to be 81.63 ± 0.38% (measured by the DPPH method). The results of the antifungal activity assay (for Aspergillus niger and Penicillium hirsutum) were 21.6 mm, respectively 17.2 mm as inhibition zone. Test results demonstrated the genoprotective potential of J. communis undiluted extract, inhibiting the mitodepressive effect of ethanol. The anti-inflammatory action of the juniper extract, administered as microemulsion in acute-dextran model was increased when compared to kaolin subacute inflammation induced model. CONCLUSION: The hydroalcoholic extract obtained from wild-growing Juniperus communis native to Romanian southern sub-Carpathian hills has genoprotective, antioxidant, antifungal and anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antifungal Agents/pharmacology , Juniperus/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Antifungal Agents/chemistry , Aspergillus niger/drug effects , Biphenyl Compounds/analysis , Biphenyl Compounds/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Inflammation/metabolism , Male , Penicillium/drug effects , Phenols/chemistry , Phenols/pharmacology , Picrates/analysis , Picrates/metabolism , Plant Extracts/chemistry , Protective Agents/chemistry , Rats , Rats, Wistar , Romania
9.
Oxid Med Cell Longev ; 2016: 9130976, 2016.
Article in English | MEDLINE | ID: mdl-28044094

ABSTRACT

The present paper aims at reviewing and commenting on the analytical methods applied to antioxidant and antioxidant capacity assessment in plant-derived products. Aspects related to oxidative stress, reactive oxidative species' influence on key biomolecules, and antioxidant benefits and modalities of action are discussed. Also, the oxidant-antioxidant balance is critically discussed. The conventional and nonconventional extraction procedures applied prior to analysis are also presented, as the extraction step is of pivotal importance for isolation and concentration of the compound(s) of interest before analysis. Then, the chromatographic, spectrometric, and electrochemical methods for antioxidant and antioxidant capacity determination in plant-derived products are detailed with respect to their principles, characteristics, and specific applications. Peculiarities related to the matrix characteristics and other factors influencing the method's performances are discussed. Health benefits of plants and derived products are described, as indicated in the original source. Finally, critical and conclusive aspects are given when it comes to the choice of a particular extraction procedure and detection method, which should consider the nature of the sample, prevalent antioxidant/antioxidant class, and the mechanism underlying each technique. Advantages and disadvantages are discussed for each method.


Subject(s)
Antioxidants/analysis , Phytochemicals/analysis , Plants/chemistry , Analytic Sample Preparation Methods , Antioxidants/isolation & purification , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...