Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
EFORT Open Rev ; 9(5): 422-433, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726988

ABSTRACT

Machine learning (ML), a subset of artificial intelligence, is crucial for spine care and research due to its ability to improve treatment selection and outcomes, leveraging the vast amounts of data generated in health care for more accurate diagnoses and decision support. ML's potential in spine care is particularly notable in radiological image analysis, including the localization and labeling of anatomical structures, detection and classification of radiological findings, and prediction of clinical outcomes, thereby paving the way for personalized medicine. The manuscript discusses ML's application in spine care, detailing supervised and unsupervised learning, regression, classification, and clustering, and highlights the importance of both internal and external validation in assessing ML model performance. Several ML algorithms such as linear models, support vector machines, decision trees, neural networks, and deep convolutional neural networks, can be used in the spine domain to analyze diverse data types (visual, tabular, omics, and multimodal).

2.
Brain Spine ; 4: 102738, 2024.
Article in English | MEDLINE | ID: mdl-38510635

ABSTRACT

Introduction: Modic Changes (MCs) are MRI alterations in spine vertebrae's signal intensity. This study introduces an end-to-end model to automatically detect and classify MCs in lumbar MRIs. The model's two-step process involves locating intervertebral regions and then categorizing MC types (MC0, MC1, MC2) using paired T1-and T2-weighted images. This approach offers a promising solution for efficient and standardized MC assessment. Research question: The aim is to investigate how different MRI normalization techniques affect MCs classification and how the model can be used in a clinical setting. Material and methods: A combination of Faster R-CNN and a 3D Convolutional Neural Network (CNN) is employed. The model first identifies intervertebral regions and then classifies MC types (MC0, MC1, MC2) using paired T1-and T2-weighted lumbar MRIs. Two datasets are used for model development and evaluation. Results: The detection model achieves high accuracy in identifying intervertebral areas, with Intersection over Union (IoU) values above 0.7, indicating strong localization alignment. Confidence scores above 0.9 demonstrate the model's accurate levels identification. In the classification task, standardization proves the best performances for MC type assessment, achieving mean sensitivities of 0.83 for MC0, 0.85 for MC1, and 0.78 for MC2, along with balanced accuracy of 0.80 and F1 score of 0.88. Discussion and conclusion: The study's end-to-end model shows promise in automating MC assessment, contributing to standardized diagnostics and treatment planning. Limitations include dataset size, class imbalance, and lack of external validation. Future research should focus on external validation, refining model generalization, and improving clinical applicability.

3.
Eur Radiol Exp ; 8(1): 11, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38316659

ABSTRACT

"Garbage in, garbage out" summarises well the importance of high-quality data in machine learning and artificial intelligence. All data used to train and validate models should indeed be consistent, standardised, traceable, correctly annotated, and de-identified, considering local regulations. This narrative review presents a summary of the techniques that are used to ensure that all these requirements are fulfilled, with special emphasis on radiological imaging and freely available software solutions that can be directly employed by the interested researcher. Topics discussed include key imaging concepts, such as image resolution and pixel depth; file formats for medical image data storage; free software solutions for medical image processing; anonymisation and pseudonymisation to protect patient privacy, including compliance with regulations such as the Regulation (EU) 2016/679 "General Data Protection Regulation" (GDPR) and the 1996 United States Act of Congress "Health Insurance Portability and Accountability Act" (HIPAA); methods to eliminate patient-identifying features within images, like facial structures; free and commercial tools for image annotation; and techniques for data harmonisation and normalisation.Relevance statement This review provides an overview of the methods and tools that can be used to ensure high-quality data for machine learning and artificial intelligence applications in radiology.Key points• High-quality datasets are essential for reliable artificial intelligence algorithms in medical imaging.• Software tools like ImageJ and 3D Slicer aid in processing medical images for AI research.• Anonymisation techniques protect patient privacy during dataset preparation.• Machine learning models can accelerate image annotation, enhancing efficiency and accuracy.• Data curation ensures dataset integrity, compliance, and quality for artificial intelligence development.


Subject(s)
Artificial Intelligence , Radiology , Humans , United States , Data Curation , Machine Learning , Algorithms
4.
J Biomech ; 163: 111918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38199948

ABSTRACT

Due to lack of reference validation data, the common strategy in characterizing adolescent idiopathic scoliosis (AIS) by musculoskeletal modelling approach consists in adapting structure and parameters of validated body models of adult individuals with physiological alignments. Until now, only static postures have been replicated and investigated in AIS subjects. When aiming to simulate trunk motion, two critical factors need consideration: how distributing movement along the vertebral motion levels (lumbar spine rhythm), and if neglecting or accounting for the contribution of the stiffness of the motion segments (disc stiffness). The present study investigates the effect of three different lumbar spine rhythms and absence/presence of disc stiffness on trunk muscle imbalance in the lumbar region and on intervertebral lateral shear at different levels of the thoracolumbar/lumbar scoliotic curve, during simulated trunk motions in the three anatomical planes (flexion/extension, lateral bending, and axial rotation). A spine model with articulated ribcage previously developed in AnyBody software and adapted to replicate the spinal alignment in AIS subjects is employed. An existing dataset of 100 subjects with mild and moderate scoliosis is exploited. The results pointed out the significant impact of lumbar spine rhythm configuration and disc stiffness on changes in the evaluated outputs, as well as a relationship with scoliosis severity. Unfortunately, no optimal settings can be identified due to lack of reference validation data. According to that, extreme caution is recommended when aiming to adapt models of adult individuals with physiological alignments to adolescent subjects with scoliotic deformity.


Subject(s)
Kyphosis , Scoliosis , Adult , Adolescent , Humans , Lumbar Vertebrae/physiology , Torso , Muscles/physiology
5.
Eur Spine J ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055037

ABSTRACT

PURPOSE: Radiation-free systems based on dorsal surface topography can potentially represent an alternative to radiographic examination for early screening of scoliosis, based on the ability of recognizing the presence of deformity or classifying its severity. This study aims to assess the effectiveness of a deep learning model based on convolutional neural networks in directly predicting the Cobb angle from rasterstereographic images of the back surface in subjects with adolescent idiopathic scoliosis. METHODS: Two datasets, comprising a total of 900 individuals, were utilized for model training (720 samples) and testing (180). Rasterstereographic scans were performed using the Formetric4D device. The true Cobb angle was obtained from radiographic examination. The best model configuration was identified by comparing different network architectures and hyperparameters through cross-validation in the training set. The performance of the developed model in predicting the Cobb angle was assessed on the test set. The accuracy in classifying scoliosis severity (non-scoliotic, mild, and moderate category) based on Cobb angle was evaluated as well. RESULTS: The mean absolute error in predicting the Cobb angle was 6.1° ± 5.0°. Moderate correlation (r = 0.68) and a root-mean-square error of 8° between the predicted and true values was reported. The overall accuracy in classifying scoliosis severity was 59%. CONCLUSION: Despite some improvement over previous approaches that relied on spine shape reconstruction, the performance of the present fully automatic application is below that of radiographic evaluation performed by human operators. The study confirms that rasterstereography cannot be considered a valid non-invasive alternative to radiographic examination for clinical purposes.

6.
Global Spine J ; : 21925682231205352, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811580

ABSTRACT

STUDY DESIGN: Retrospective data analysis. OBJECTIVES: This study aims to develop a deep learning model for the automatic calculation of some important spine parameters from lateral cervical radiographs. METHODS: We collected two datasets from two different institutions. The first dataset of 1498 images was used to train and optimize the model to find the best hyperparameters while the second dataset of 79 images was used as an external validation set to evaluate the robustness and generalizability of our model. The performance of the model was assessed by calculating the median absolute errors between the model prediction and the ground truth for the following parameters: T1 slope, C7 slope, C2-C7 angle, C2-C6 angle, Sagittal Vertical Axis (SVA), C0-C2, Redlund-Johnell distance (RJD), the cranial tilting (CT) and the craniocervical angle (CCA). RESULTS: Regarding the angles, we found median errors of 1.66° (SD 2.46°), 1.56° (1.95°), 2.46° (SD 2.55), 1.85° (SD 3.93°), 1.25° (SD 1.83°), .29° (SD .31°) and .67° (SD .77°) for T1 slope, C7 slope, C2-C7, C2-C6, C0-C2, CT, and CCA respectively. As concerns the distances, we found median errors of .55 mm (SD .47 mm) and .47 mm (.62 mm) for SVA and RJD respectively. CONCLUSIONS: In this work, we developed a model that was able to accurately predict cervical spine parameters from lateral cervical radiographs. In particular, the performances on the external validation set demonstrate the robustness and the high degree of generalizability of our model on images acquired in a different institution.

7.
Eur Spine J ; 32(11): 3836-3845, 2023 11.
Article in English | MEDLINE | ID: mdl-37650978

ABSTRACT

PURPOSE: The study aims to assess if the angle of trunk rotation (ATR) in combination with other readily measurable clinical parameters allows for effective non-invasive scoliosis screening. METHODS: We analysed 10,813 patients (4-18 years old) who underwent clinical and radiological evaluation for scoliosis in a tertiary clinic specialised in spinal deformities. We considered as predictors ATR, Prominence (mm), visible asymmetry of the waist, scapulae and shoulders, familiarity, sex, BMI, age, menarche, and localisation of the curve. We implemented a Logistic Regression model to classify the Cobb angle of the major curve according to thresholds of 15, 20, 25, 30, and 40 degrees, by randomly splitting the dataset into 80-20% for training and testing, respectively. RESULTS: The model showed accuracies of 74, 81, 79, 79, and 84% for 15-, 20-, 25-, 30- and 40-degrees thresholds, respectively. For all the thresholds ATR, Prominence, and visible asymmetry of the waist were the top five most important variables for the prediction. Samples that were wrongly classified as negatives had always statistically significant (p ≪ 0.01) lower values of ATR and Prominence. This confirmed that these two parameters were very important for the correct classification of the Cobb angle. The model showed better performances than using the 5 and 7 degrees ATR thresholds to prescribe a radiological examination. CONCLUSIONS: Machine-learning-based classification models have the potential to effectively improve the non-invasive screening for AIS. The results of the study constitute the basis for the development of easy-to-use tools enabling physicians to decide whether to prescribe radiographic imaging.


Subject(s)
Scoliosis , Adolescent , Child , Child, Preschool , Female , Humans , Artificial Intelligence , Radiography , Retrospective Studies , Scoliosis/diagnostic imaging , Treatment Outcome , Male
8.
Front Surg ; 10: 1172313, 2023.
Article in English | MEDLINE | ID: mdl-37425349

ABSTRACT

Introduction: A novel classification scheme for endplate lesions, based on T2-weighted images from magnetic resonance imaging (MRI) scan, has been recently introduced and validated. The scheme categorizes intervertebral spaces as "normal," "wavy/irregular," "notched," and "Schmorl's node." These lesions have been associated with spinal pathologies, including disc degeneration and low back pain. The exploitation of an automatic tool for the detection of the lesions would facilitate clinical practice by reducing the workload and the diagnosis time. The present work exploits a deep learning application based on convolutional neural networks to automatically classify the type of lesion. Methods: T2-weighted MRI scans of the sagittal lumbosacral spine of consecutive patients were retrospectively collected. The middle slice of each scan was manually processed to identify the intervertebral spaces from L1L2 to L5S1, and the corresponding lesion type was labeled. A total of 1,559 gradable discs were obtained, with the following types of distribution: "normal" (567 discs), "wavy/irregular" (485), "notched" (362), and "Schmorl's node" (145). The dataset was divided randomly into a training set and a validation set while preserving the original distribution of lesion types in each set. A pretrained network for image classification was utilized, and fine-tuning was performed using the training set. The retrained net was then applied to the validation set to evaluate the overall accuracy and accuracy for each specific lesion type. Results: The overall rate of accuracy was found equal to 88%. The accuracy for the specific lesion type was found as follows: 91% (normal), 82% (wavy/irregular), 93% (notched), and 83% (Schmorl's node). Discussion: The results indicate that the deep learning approach achieved high accuracy for both overall classification and individual lesion types. In clinical applications, this implementation could be employed as part of an automatic detection tool for pathological conditions characterized by the presence of endplate lesions, such as spinal osteochondrosis.

10.
Global Spine J ; 13(5): 1257-1266, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34219477

ABSTRACT

STUDY DESIGN: Retrospective study. OBJECTIVES: Huge amounts of images and medical reports are being generated in radiology departments. While these datasets can potentially be employed to train artificial intelligence tools to detect findings on radiological images, the unstructured nature of the reports limits the accessibility of information. In this study, we tested if natural language processing (NLP) can be useful to generate training data for deep learning models analyzing planar radiographs of the lumbar spine. METHODS: NLP classifiers based on the Bidirectional Encoder Representations from Transformers (BERT) model able to extract structured information from radiological reports were developed and used to generate annotations for a large set of radiographic images of the lumbar spine (N = 10 287). Deep learning (ResNet-18) models aimed at detecting radiological findings directly from the images were then trained and tested on a set of 204 human-annotated images. RESULTS: The NLP models had accuracies between 0.88 and 0.98 and specificities between 0.84 and 0.99; 7 out of 12 radiological findings had sensitivity >0.90. The ResNet-18 models showed performances dependent on the specific radiological findings with sensitivities and specificities between 0.53 and 0.93. CONCLUSIONS: NLP generates valuable data to train deep learning models able to detect radiological findings in spine images. Despite the noisy nature of reports and NLP predictions, this approach effectively mitigates the difficulties associated with the manual annotation of large quantities of data and opens the way to the era of big data for artificial intelligence in musculoskeletal radiology.

11.
Front Bioeng Biotechnol ; 10: 863054, 2022.
Article in English | MEDLINE | ID: mdl-35910028

ABSTRACT

We developed and used a deep learning tool to process biplanar radiographs of 9,832 non-surgical patients suffering from spinal deformities, with the aim of reporting the statistical distribution of radiological parameters describing the spinal shape and the correlations and interdependencies between them. An existing tool able to automatically perform a three-dimensional reconstruction of the thoracolumbar spine has been improved and used to analyze a large set of biplanar radiographs of the trunk. For all patients, the following parameters were calculated: spinopelvic parameters; lumbar lordosis; mismatch between pelvic incidence and lumbar lordosis; thoracic kyphosis; maximal coronal Cobb angle; sagittal vertical axis; T1-pelvic angle; maximal vertebral rotation in the transverse plane. The radiological parameters describing the sagittal alignment were found to be highly interrelated with each other, as well as dependent on age, while sex had relatively minor but statistically significant importance. Lumbar lordosis was associated with thoracic kyphosis, pelvic incidence and sagittal vertical axis. The pelvic incidence-lumbar lordosis mismatch was found to be dependent on the pelvic incidence and on age. Scoliosis had a distinct association with the sagittal alignment in adolescent and adult subjects. The deep learning-based tool allowed for the analysis of a large imaging database which would not be reasonably feasible if performed by human operators. The large set of results will be valuable to trigger new research questions in the field of spinal deformities, as well as to challenge the current knowledge.

12.
Medicina (Kaunas) ; 58(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893113

ABSTRACT

Background and Objectives: Commonly being the first step in trauma routine imaging, up to 67% fractures are missed on plain radiographs of the thoracolumbar (TL) spine. The aim of this study was to develop a deep learning model that detects traumatic fractures on sagittal radiographs of the TL spine. Identifying vertebral fractures in simple radiographic projections would have a significant clinical and financial impact, especially for low- and middle-income countries where computed tomography (CT) and magnetic resonance imaging (MRI) are not readily available and could help select patients that need second level imaging, thus improving the cost-effectiveness. Materials and Methods: Imaging studies (radiographs, CT, and/or MRI) of 151 patients were used. An expert group of three spinal surgeons reviewed all available images to confirm presence and type of fractures. In total, 630 single vertebra images were extracted from the sagittal radiographs of the 151 patients-302 exhibiting a vertebral body fracture, and 328 exhibiting no fracture. Following augmentation, these single vertebra images were used to train, validate, and comparatively test two deep learning convolutional neural network models, namely ResNet18 and VGG16. A heatmap analysis was then conducted to better understand the predictions of each model. Results: ResNet18 demonstrated a better performance, achieving higher sensitivity (91%), specificity (89%), and accuracy (88%) compared to VGG16 (90%, 83%, 86%). In 81% of the cases, the "warm zone" in the heatmaps correlated with the findings, suggestive of fracture within the vertebral body seen in the imaging studies. Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the fractures. A4, A3, and A1 were the most frequent fracture types according to the AO Spine Classification. Conclusions: ResNet18 could accurately identify the traumatic vertebral fractures on the TL sagittal radiographs. In most cases, the model based its prediction on the same areas that human expert classifiers used to determine the presence of a fracture.


Subject(s)
Spinal Fractures , Thoracic Vertebrae , Artificial Intelligence , Humans , Lumbar Vertebrae/injuries , Radiography , Retrospective Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/injuries
14.
Skeletal Radiol ; 51(9): 1873-1878, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35347406

ABSTRACT

PURPOSE: Since the critical shoulder angle (CSA) is considered a risk factor for shoulder pathology and the intra- and inter-rater variabilities in its calculation are not negligible, we developed a deep learning model that calculates it automatically and accurately. METHODS: We used a dataset of 8467 anteroposterior x-ray images of the shoulder annotated with 3 landmarks of interest. A Convolutional Neural Network model coupled with a spatial to numerical transform (DSNT) layer was used to predict the landmark coordinates from which the CSA was calculated. The performances were evaluated by calculating the Euclidean distance between the ground truth coordinates and the predicted ones normalized with respect to the distance between the first and the second points, and the error between the CSA angle measured by a human observer and the predicted one. RESULTS: Regarding the normalized point distances, we obtained a median error of 2.9%, 2.5%, and 2% for the three points among the entire set. Considering CSA calculations, the median errors were 1° (standard deviation 1.2°), 0.88° (standard deviation 0.87°), and 0.99° (standard deviation 1°) for angles below 30°, between 30° and 35°, and above 35°, respectively. DISCUSSION: These results demonstrate that the model has the potential to be used in clinical settings where the replicability is important. The reported standard error of the CSA measurement is greater than 2° that is above the median error of our model, indicating a potential accuracy sufficient to be used in a clinical setting.


Subject(s)
Deep Learning , Shoulder Joint , Humans , Radiography , Retrospective Studies , Shoulder/diagnostic imaging , Shoulder Joint/diagnostic imaging
15.
J Pers Med ; 11(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34945849

ABSTRACT

The study aims to create a preoperative model from baseline demographic and health-related quality of life scores (HRQOL) to predict a good to excellent early clinical outcome using a machine learning (ML) approach. A single spine surgery center retrospective review of prospectively collected data from January 2016 to December 2020 from the institutional registry (SpineREG) was performed. The inclusion criteria were age ≥ 18 years, both sexes, lumbar arthrodesis procedure, a complete follow up assessment (Oswestry Disability Index-ODI, SF-36 and COMI back) and the capability to read and understand the Italian language. A delta of improvement of the ODI higher than 12.7/100 was considered a "good early outcome". A combined target model of ODI (Δ ≥ 12.7/100), SF-36 PCS (Δ ≥ 6/100) and COMI back (Δ ≥ 2.2/10) was considered an "excellent early outcome". The performance of the ML models was evaluated in terms of sensitivity, i.e., True Positive Rate (TPR), specificity, i.e., True Negative Rate (TNR), accuracy and area under the receiver operating characteristic curve (AUC ROC). A total of 1243 patients were included in this study. The model for predicting ODI at 6 months' follow up showed a good balance between sensitivity (74.3%) and specificity (79.4%), while providing a good accuracy (75.8%) with ROC AUC = 0.842. The combined target model showed a sensitivity of 74.2% and specificity of 71.8%, with an accuracy of 72.8%, and an ROC AUC = 0.808. The results of our study suggest that a machine learning approach showed high performance in predicting early good to excellent clinical results.

16.
Front Bioeng Biotechnol ; 9: 703144, 2021.
Article in English | MEDLINE | ID: mdl-34568296

ABSTRACT

A major clinical challenge in adolescent idiopathic scoliosis (AIS) is the difficulty of predicting curve progression at initial presentation. The early detection of progressive curves can offer the opportunity to better target effective non-operative treatments, reducing the need for surgery and the risks of related complications. Predictive models for the detection of scoliosis progression in subjects before growth spurt have been developed. These models accounted for geometrical parameters of the global spine and local descriptors of the scoliotic curve, but neglected contributions from biomechanical measurements such as trunk muscle activation and intervertebral loading, which could provide advantageous information. The present study exploits a musculoskeletal model of the thoracolumbar spine, developed in AnyBody software and adapted and validated for the subject-specific characterization of mild scoliosis. A dataset of 100 AIS subjects with mild scoliosis and in pre-pubertal age at first examination, and recognized as stable (60) or progressive (40) after at least 6-months follow-up period was exploited. Anthropometrical data and geometrical parameters of the spine at first examination, as well as biomechanical parameters from musculoskeletal simulation replicating relaxed upright posture were accounted for as predictors of the scoliosis progression. Predicted height and weight were used for model scaling because not available in the original dataset. Robust procedure for obtaining such parameters from radiographic images was developed by exploiting a comparable dataset with real values. Six predictive modelling approaches based on different algorithms for the binary classification of stable and progressive cases were compared. The best fitting approaches were exploited to evaluate the effect of accounting for the biomechanical parameters on the prediction of scoliosis progression. The performance of two sets of predictors was compared: accounting for anthropometrical and geometrical parameters only; considering in addition the biomechanical ones. Median accuracy of the best fitting algorithms ranged from 0.76 to 0.78. No differences were found in the classification performance by including or neglecting the biomechanical parameters. Median sensitivity was 0.75, and that of specificity ranged from 0.75 to 0.83. In conclusion, accounting for biomechanical measures did not enhance the prediction of curve progression, thus not supporting a potential clinical application at this stage.

17.
Sci Rep ; 11(1): 9482, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947917

ABSTRACT

In this work we propose to use Deep Learning to automatically calculate the coordinates of the vertebral corners in sagittal x-rays images of the thoracolumbar spine and, from those landmarks, to calculate relevant radiological parameters such as L1-L5 and L1-S1 lordosis and sacral slope. For this purpose, we used 10,193 images annotated with the landmarks coordinates as the ground truth. We realized a model that consists of 2 steps. In step 1, we trained 2 Convolutional Neural Networks to identify each vertebra in the image and calculate the landmarks coordinates respectively. In step 2, we refined the localization using cropped images of a single vertebra as input to another convolutional neural network and we used geometrical transformations to map the corners to the original image. For the localization tasks, we used a differentiable spatial to numerical transform (DSNT) as the top layer. We evaluated the model both qualitatively and quantitatively on a set of 195 test images. The median localization errors relative to the vertebrae dimensions were 1.98% and 1.68% for x and y coordinates respectively. All the predicted angles were highly correlated with the ground truth, despite non-negligible absolute median errors of 1.84°, 2.43° and 1.98° for L1-L5, L1-S1 and SS respectively. Our model is able to calculate with good accuracy the coordinates of the vertebral corners and has a large potential for improving the reliability and repeatability of measurements in clinical tasks.


Subject(s)
Lumbar Vertebrae/diagnostic imaging , Spine/diagnostic imaging , Deep Learning , Humans , Lordosis/diagnostic imaging , Neural Networks, Computer , Radiography/methods , Reproducibility of Results
18.
Sci Rep ; 11(1): 1799, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469069

ABSTRACT

Adolescent idiopathic scoliosis is a three-dimensional deformity of the spine which is frequently corrected with the implantation of instrumentation with generally good or excellent clinical results; mechanical post-operative complications such as implant loosening and breakage are however relatively frequent. The rate of complications is associated with a lack of consensus about the surgical decision-making process; choices about the instrumentation length, the anchoring implants and the degree of correction are indeed mostly based on personal views and previous experience of the surgeon. In this work, we performed an in silico clinical trial on a large number of subjects in order to clarify which factors have the highest importance in determining the risk of complications by quantitatively analysing the mechanical stresses and loads in the instrumentation after the correction maneuvers. The results of the simulations highlighted the fundamental role of the curve severity, also in its three-dimensional aspect, and of the instrumentation strategy, whereas the length of the fixation had a lower importance.


Subject(s)
Clinical Trials as Topic , Scoliosis/surgery , Adolescent , Computer Simulation , Humans , Scoliosis/pathology , Severity of Illness Index , Treatment Outcome
19.
Eur Spine J ; 30(5): 1108-1116, 2021 05.
Article in English | MEDLINE | ID: mdl-33475843

ABSTRACT

PURPOSE: We investigated the flexion-extension range of motion and centre of rotation of lumbar motion segments in a large population of 602 patients (3612 levels), and the associations between lumbar motion and other parameters such as sex, age and intervertebral disc degeneration. METHODS: Lumbar radiographs in flexion-extension of 602 patients suffering from low back pain and/or suspect instability were collected; magnetic resonance images were retrieved and used to score the degree of disc degeneration for a subgroup of 354 patients. Range of motion and centre of rotation were calculated for all lumbosacral levels with in-house software allowing for high degree of automation. Associations between motion parameters and age, sex, spinal level and disc degeneration were then assessed. RESULTS: The median range of motion was 6.6° (range 0.1-28.9°). Associations between range of motion and age as well as spinal level, but not sex, were found. Disc degeneration determined a consistent reduction in the range of motion. The centre of rotation was most commonly located at the centre of the lower endplate or slightly lower. With progressive degeneration, centres of rotation were increasingly dispersed with no preferential directions. CONCLUSION: This study constitutes the largest analysis of the in vivo lumbar motion currently available and covers a wide range of clinical scenarios in terms of age and degeneration. Findings confirmed that ageing determines a reduction in the mobility independently of degeneration and that in degenerative levels, centres of rotation are dispersed around the centre of the intervertebral space.


Subject(s)
Awards and Prizes , Intervertebral Disc Degeneration , Low Back Pain , Big Data , Bioengineering , Biomechanical Phenomena , Humans , Lumbar Vertebrae , Range of Motion, Articular
20.
Eur Radiol Exp ; 4(1): 49, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32789547

ABSTRACT

Finite element modeling is a precious tool for the investigation of the biomechanics of the musculoskeletal system. A key element for the development of anatomically accurate, state-of-the art finite element models is medical imaging. Indeed, the workflow for the generation of a finite element model includes steps which require the availability of medical images of the subject of interest: segmentation, which is the assignment of each voxel of the images to a specific material such as bone and cartilage, allowing for a three-dimensional reconstruction of the anatomy; meshing, which is the creation of the computational mesh necessary for the approximation of the equations describing the physics of the problem; assignment of the material properties to the various parts of the model, which can be estimated for example from quantitative computed tomography for the bone tissue and with other techniques (elastography, T1rho, and T2 mapping from magnetic resonance imaging) for soft tissues. This paper presents a brief overview of the techniques used for image segmentation, meshing, and assessing the mechanical properties of biological tissues, with focus on finite element models of the musculoskeletal system. Both consolidated methods and recent advances such as those based on artificial intelligence are described.


Subject(s)
Finite Element Analysis , Magnetic Resonance Imaging/methods , Musculoskeletal Physiological Phenomena , Musculoskeletal System/diagnostic imaging , Tomography, X-Ray Computed/methods , Artificial Intelligence , Biomechanical Phenomena , Humans , Imaging, Three-Dimensional , Models, Anatomic
SELECTION OF CITATIONS
SEARCH DETAIL