Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 232: 123408, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36709813

ABSTRACT

Crotalus durissus snakebite represent 10 % of snakebite cases in Brazil, which cardiovascular disorders are associated with severe cases. Considering crotoxin (CTX) as the major venom component, the present study aimed to evaluate the hemodynamic alterations induced by CTX using in vivo and ex vivo approaches in a rat model. In vivo cardiac function parameters were analyzed from anesthetized rats treated with CTX or saline only (Sham), along with serum creatine kinase MB (CK-MB) and lung myeloperoxidase. From the same animals, hearts were isolated and functional parameters evaluated in Langendorff method ex vivo. CTX binding to myoblast cell line in vitro were evaluated using confocal microscopy and flow cytometry. CTX was capable of reducing arterial and diastolic blood pressure, heart rate, along with left ventricle pressure development or decay during systole (LVdP/dtmax and LVdP/dtmin) in vivo, however no differences were found in the ex vivo approach, showing that intrinsic heart function was preserved. In vitro, CTX binding to myoblast cell line was mitigated by hexamethonium, a nicotinic acetylcholine receptor antagonist. The present study has shown that CTX induce hemodynamic failure in rats, which can help improve the clinical management of cardiovascular alterations during Crotalus durissus snakebite.


Subject(s)
Crotoxin , Snake Bites , Rats , Animals , Crotoxin/pharmacology , Blood Pressure , Brazil
2.
Peptides ; 104: 24-34, 2018 06.
Article in English | MEDLINE | ID: mdl-29684590

ABSTRACT

Venom small peptides that target neurotrophin receptors might be beneficial in neurodegeneration, including Parkinsons disease (PD). Their small size, ease of synthesis, structural stability and target selectivity make them important tools to overcome the limitations of endogenous neurotrophins as therapeutic agents. Additionally, they might be optimized to improve resistance to enzymatic degradation, bioavailability, potency and, mainly, lipophilicity, important to cross the blood brain barrier (BBB). Here, we evaluated the neuroprotective effects and mechanisms of the synthetic snake-venom-based peptide p-BTX-I (Glu-Val-Trp) in PC12 cells treated with MPP+ (1-methyl-4-phenylpyridinium), a dopaminergic neurotoxin that induces Parkinsonism in vivo. The peptide p-BTX-I induced neuritogenesis, which was reduced by (i) k252a, antagonist of the NGF-selective receptor, trkA (tropomyosin receptor kinase A); (ii) LY294002, inhibitor of the PI3 K/AKT pathway and (iii) U0126, inhibitor of the MAPK-ERK pathway. Besides that, p-BTX-I also increased the expression of GAP-43 and synapsin, which are molecular markers of axonal growth and synaptic communication. In addition, the peptide increased the viability and differentiation of cells exposed to MPP+, known to inhibit neuritogenesis. Altogether, our findings suggest that the synthetic peptide p-BTX-I protects PC12 cells from MPP+ toxicity by a mechanism that mimics the neurotrophic action of NGF. Therefore, the molecular structure of p-BTX-I might be relevant in the development of drugs aimed at restoring the axonal connectivity in neurodegenerative processes.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Signal Transduction/drug effects , Snake Venoms/chemistry , Animals , Cell Survival/drug effects , GAP-43 Protein/metabolism , Nerve Growth Factor/metabolism , Oligopeptides/chemistry , PC12 Cells , Rats , Receptor, trkB/metabolism , Synapsins/metabolism
3.
Int J Biol Macromol ; 103: 25-35, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28495622

ABSTRACT

A new l-amino acid oxidase (LAAO) from Bothrops jararacussu venom (BjussuLAAO-II) was isolated by using a three-step chromatographic procedure based on molecular exclusion, hydrophobicity, and affinity. BjussuLAAO-II is an acidic enzyme with pI=3.9 and molecular mass=60.36kDa that represents 0.3% of the venom proteins and exhibits high enzymatic activity (4884.53U/mg/mim). We determined part of the primary sequence of BjussuLAAO-II by identifying 96 amino acids, from which 34 compose the N-terminal of the enzyme (ADDRNPLEECFRETDYEEFLEIARNGLSDTDNPK). Multiple alignment of the partial BjussuLAAO-II sequence with LAAOs deposited in the NCBI database revealed high similarity (95-97%) with other LAAOs isolated from Bothrops snake venoms. BjussuLAAO-II exerted a strong antiprotozoal effect against Leishmania amazonensis (IC50=4.56µg/mL) and Trypanosoma cruzi (IC50=4.85µg/mL). This toxin also induced cytotoxicity (IC50=1.80µg/mL) and apoptosis in MCF7 cells (a human breast adenocarcinoma cell line) by activating the intrinsic and extrinsic apoptosis pathways, but were not cytotoxic towards MCF10A cells (a non-tumorigenic human breast epithelial cell line). The results reported herein add important knowledge to the field of Toxinology, especially for the development of new therapeutic agents.


Subject(s)
Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Bothrops , Crotalid Venoms/enzymology , L-Amino Acid Oxidase/isolation & purification , L-Amino Acid Oxidase/pharmacology , Amino Acid Sequence , Animals , Antiprotozoal Agents/chemistry , Humans , L-Amino Acid Oxidase/chemistry , MCF-7 Cells
4.
Toxicon ; 124: 53-62, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-28327300

ABSTRACT

Phospholipase A2 inhibitors (PLIs) are important targets in the search and development of new drugs. This study aimed at evaluating the potential of an alpha-type phospholipase A2 inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake in its recombinant form (rBaltMIP) to complement the conventional antivenom therapy. Biochemical experiments showed that rBaltMIP presented pI 5.8 and molecular masses of ∼21 kDa by SDS-PAGE and 19.57 kDa by MALDI/TOF MS. After tryptic peptides sequencing, the results were compared with other PLIs available in databases, showing 100% identity between rBaltMIP and its native inhibitor BaltMIP and from 92% to 96% identity with other inhibitors. Myotoxic activities of BthTX-I and BthTX-II toxins were measured via plasma CK levels, showing myotoxic effective concentrations (EC50) of 0.1256 µg/µL and 0.6183 µg/µL, respectively. rBaltMIP neutralized the myotoxicity caused by these two toxins up to 65%, without promoting primary antibody response against itself. Nevertheless, this recombinant PLI was immunogenic when standard immunization protocol with Freud's adjuvant was used. In paw edema assays, EC50 of 0.02581 µg/µL and 0.02810 µg/µL, respectively, were observed with edema reductions of up to 40% by rBaltMIP, suggesting its use as an additional antivenom. In addition, myotoxicity neutralization experiments with the myotoxin BthTX-I showed that rBaltMIP was more effective in inhibiting muscle damage than the conventional antivenom. Thus, considering the severity of envenomations due to Bothrops alternatus (Rhinocerophis alternatus) and the low neutralization of their local effects (such as myotoxicity) by the current antivenoms, rBaltMIP is a promising molecule for the development of novel therapeutic strategies for clinical applications.


Subject(s)
Antivenins/therapeutic use , Bothrops , Phospholipase A2 Inhibitors/therapeutic use , Recombinant Proteins/therapeutic use , Snake Bites/drug therapy , Animals , Antivenins/chemistry , Mice , Mice, Inbred BALB C , Phospholipase A2 Inhibitors/isolation & purification , Recombinant Proteins/isolation & purification , Reptilian Proteins , Snake Bites/pathology , Toxicity Tests
5.
Arch Toxicol ; 90(5): 1261-78, 2016 May.
Article in English | MEDLINE | ID: mdl-26026608

ABSTRACT

Coagulopathies following snakebite are triggered by pro-coagulant venom toxins, in which metalloproteases play a major role in envenomation-induced coagulation disorders by acting on coagulation cascade, platelet function and fibrinolysis. Considering this relevance, here we describe the isolation and biochemical characterization of moojenactivase (MooA), a metalloprotease from Bothrops moojeni snake venom, and investigate its involvement in hemostasis in vitro. MooA is a glycoprotein of 85,746.22 Da, member of the PIIId group of snake venom metalloproteases, composed of three linked disulfide-bonded chains: an N-glycosylated heavy chain, and two light chains. The venom protease induced human plasma clotting in vitro by activating on both blood coagulation factors II (prothrombin) and X, which in turn generated α-thrombin and factor Xa, respectively. Additionally, MooA induced expression of tissue factor (TF) on the membrane surface of peripheral blood mononuclear cells (PBMC), which led these cells to adopt pro-coagulant characteristics. MooA was also shown to be involved with production of the inflammatory mediators TNF-α, IL-8 and MCP-1, suggesting an association between MooA pro-inflammatory stimulation of PBMC and TF up-regulation. We also observed aggregation of washed platelets when in presence of MooA; however, the protease had no effect on fibrinolysis. Our findings show that MooA is a novel hemostatically active metalloprotease, which may lead to the development of coagulopathies during B. moojeni envenomation. Moreover, the metalloprotease may contribute to the development of new diagnostic tools and pharmacological approaches applied to hemostatic disorders.


Subject(s)
Blood Coagulation/drug effects , Bothrops/metabolism , Coagulants/pharmacology , Crotalid Venoms/enzymology , Factor Xa/metabolism , Leukocytes/drug effects , Metalloendopeptidases/pharmacology , Metalloproteases/pharmacology , Prothrombin/metabolism , Thromboplastin/metabolism , Adult , Amino Acid Sequence , Animals , Coagulants/isolation & purification , Crotalid Venoms/isolation & purification , Crotalid Venoms/pharmacology , Enzyme Stability , Female , Humans , Hydrogen-Ion Concentration , Inflammation Mediators/metabolism , Kinetics , Leukocytes/metabolism , Male , Metalloendopeptidases/isolation & purification , Metalloproteases/isolation & purification , Middle Aged , Temperature , Young Adult
6.
Article in English | MEDLINE | ID: mdl-26539212

ABSTRACT

BACKGROUND: Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. METHODS: The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. RESULTS: It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). CONCLUSIONS: These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.

7.
Mol Immunol ; 68(2 Pt B): 456-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26468034

ABSTRACT

In this study, we evaluated the edema and hyperalgesic response induced by BpirMP, a P-I class metalloproteinase isolated from Bothrops pirajai snake venom. The animals were injected with the metalloproteinase or sterile PBS (control group) and evaluated for 1, 2, 3, 4, 5, 6 and 24h. The intraplantar injection of BpirMP (5-50µg/paw) induced a dose- and time-dependent response. BpirMP (50µg) induced paw edema in rats rapidly, with peak response two hours after injection of the toxin. Also, BpirMP injection caused a significant reduction in the nociceptive threshold of the animals tested, with peak response three hours after injection of the toxin. The inflammatory mediators involved in these responses were assayed by pretreatment of animals with synthesis inhibitors or receptor antagonists. Peak responses were significantly reduced by pretreatment of animals with pyrilamine, a histamine receptor antagonist, sodium cromoglycate, a mast cell degranulation inhibitor and valeryl salicylate and meloxicam, cyclooxygenase inhibitors. The analysis of the peritoneal cavity exudate revealed an acute inflammatory response with recruitment of leukocytes, increased levels of total proteins, nitric oxide and the cytokines IL-6, TNF-α and IL-10. In conclusion, our results demonstrated that BpirMP induces inflammation mediated by mast cell degranulation, histamine, prostaglandins and cytokine production.


Subject(s)
Crotalid Venoms/toxicity , Edema/chemically induced , Hyperalgesia/chemically induced , Inflammation/chemically induced , Mast Cells/physiology , Metalloproteases/toxicity , Nociception/drug effects , Viper Venoms/toxicity , Animals , Bothrops/metabolism , Cell Degranulation/immunology , Cromolyn Sodium/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Edema/immunology , Edema/pathology , Female , Histamine H1 Antagonists/pharmacology , Hyperalgesia/immunology , Hyperalgesia/pathology , Inflammation/immunology , Inflammation/pathology , Interleukin-10/immunology , Interleukin-6/immunology , Leukocytes/immunology , Male , Meloxicam , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Pyrilamine/pharmacology , Rats , Rats, Wistar , Salicylates/pharmacology , Thiazines/pharmacology , Thiazoles/pharmacology , Tumor Necrosis Factor-alpha/immunology
8.
Article in English | MEDLINE | ID: mdl-26273288

ABSTRACT

BACKGROUND: Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. METHODS: To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. RESULTS: The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. CONCLUSIONS: The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.

9.
Int Immunopharmacol ; 28(1): 199-207, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26072684

ABSTRACT

Snake venom metalloproteinases have been described as responsible for several inflammatory effects. In this study, we investigated the edema and hyperalgesia induced in rats by Batroxase, a P-I metalloproteinase from Bothrops atrox venom, along with possible inflammatory mediators involved in these responses. Batroxase or sterile saline was injected into rat paws and the edema and hyperalgesic effects were evaluated for 6h by using a plethysmometer and a Von Frey system, respectively. Batroxase induced significant edematogenic and hyperalgesic peak responses in the first hours after administration. The inflammatory mediators involved in these responses were assayed by pretreatment of animals with synthesis inhibitors or receptor antagonists. Peak responses were significantly reduced by administration of the glucocorticoid dexamethasone, the H1 receptor antagonist diphenhydramine and the FLAP inhibitor MK-886. Rat paws injected with compound 48/80, a mast cell degranulating agent, followed by Batroxase injection resulted in significant reduction of the edema and hyperalgesia. However, Batroxase itself induced minor degranulation of RBL-2H3 mast cells in vitro. Additionally, the inflammatory responses did not seem to be related to prostaglandins, bradykinin or nitric oxide. Our results indicate a major involvement of histamine and leukotrienes in the edema and hyperalgesia induced by Batroxase, which could be related, at least in part, to mast cell degranulation.


Subject(s)
Crotalid Venoms/enzymology , Edema/pathology , Foot/pathology , Hyperalgesia/pathology , Inflammation Mediators/metabolism , Metalloproteases , Animals , Bothrops , Cell Degranulation/drug effects , Edema/chemically induced , Hyperalgesia/chemically induced , Male , Mast Cells/drug effects , Pain Measurement/drug effects , Rats , Rats, Wistar
10.
Toxicon ; 103: 80-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26091877

ABSTRACT

Bothrops jararacussu venom drastically decreases sarcoplasmic Ca(2+)-ATPase (SERCA) protein expression in vivo and inhibits its activity in vitro, in contrast to a slight increase of Na(+)/K(+)-ATPase expression in murine EDL. We investigated the effect of myotoxins bothropstoxin-I and/or -II (BthTX-I, BthTX-II and BthTX-I+II) on this model. No changes were seen in SERCA1, SERCA2 and Na(+)/K(+)-ATPase α1 protein expression as well as (2+)Ca-ATPase activity, but BthTX-II (1 µg/g) reduced Na(+)/K(+)-ATPase α2 expression by 50% one day after perimuscular injection. Interestingly, BthTX-II inhibited Ca(2+)-ATPase activity (IC50 around 6 nM). Our findings suggest that only BthTX-II affects ion transport ATPases, being a potent SERCA inhibitor and a putative target for antivenom drug development.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/metabolism , Group II Phospholipases A2/toxicity , Animals , Antivenins/pharmacology , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Crotalid Venoms/toxicity , Inhibitory Concentration 50 , Mice , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/drug effects , Rats , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism
11.
Toxicon ; 98: 20-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25702961

ABSTRACT

Snake envenoming is an important public health problem around the world, particularly in tropics. Beyond deaths, morbidity induced by snake venoms, such as myotoxicity, is of pivotal consequence to population. Bothrops jararacussu is the main venomous snake in southeast region of Brazil, and particularly presents strong myotoxic effect. The only available therapy, antibothropic antivenom, poorly affects venom-induced myotoxicity. The aim of this study is to assess the ability of fucosylated chondroitin sulfate (fucCS), a glycosaminoglycan with anticoagulant and antithrombotic properties, and its derivatives to inhibit toxic activities of B. jararacussu crude venom and its isolated toxins, named bothropstoxins (BthTX-I and BthTX-II). The in vitro myotoxic activities induced by crude venom, by BthTX-I alone and by toxins together were abolished by fucCS. Carboxyl reduction (fucCS-CR) kept this ability whereas defucosilation (defucCS) abrogates myoprotection. We observed the same pattern in the response of these polysaccharides in antagonizing the increase in plasma creatine kinase (CK) levels, the reduction of skeletal muscle CK content and the rise of myeloperoxidase (MPO) activity induced by crude venom and isolated toxins. FucCS inhibited edematogenic activity and partially prevented the reduction of total leukocytes in blood when pre-incubated with crude venom. Furthermore, the venom procoagulant effect was completely antagonized by increasing concentrations of fucCS, although this polyanion could stop neither the tail bleeding nor the skin hemorrhage induced by Bothrops jararaca venom. The B. jararacussu phospholipase, hyaluronidase, proteolytic and collagenase activities were inhibited in vitro. The results suggest that fucCS could be able to interact with both toxins, and it is able to inhibit BthTX-II phospholipase activity. Light microscopy of extensor digitorum longus muscle (EDL) muscle showed myoprotection by fucCS, once necrotic areas, edema and inflammatory cells were all decreased as compared to venom injection alone. Altogether, data show that fucCS was able to inhibit myotoxicity and inflammation induced by B. jararacussu venom and its phospholipase toxins, BthTX-I and BthTX-II. Thus, fucosylated chondroitin sulfate is a new polyanion with potential to be used as an adjuvant in the treatment of snakebites in the future.


Subject(s)
Chondroitin Sulfates/pharmacology , Crotalid Venoms/toxicity , Fucose/pharmacology , Muscle, Skeletal/drug effects , Animals , Bothrops , Brazil , Collagenases/metabolism , Creatine Kinase/antagonists & inhibitors , Creatine Kinase/blood , Edema/chemically induced , Edema/drug therapy , Group II Phospholipases A2/toxicity , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Leukocytes/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Peroxidase/metabolism , Phospholipases/antagonists & inhibitors , Phospholipases/metabolism , Snake Bites/drug therapy
12.
J. venom. anim. toxins incl. trop. dis ; 21: 1-14, 31/03/2015. ilus, graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1484630

ABSTRACT

Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA 2 ) from Bothrops atroxvenom, and biochemically characterize these molecules to enable future functional studies.Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing.Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A 2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2 s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA 2 .Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA 2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.


Subject(s)
Animals , Animals, Poisonous , Bothrops , /isolation & purification , Metalloproteases/isolation & purification , Crotalid Venoms/isolation & purification
13.
J. venom. anim. toxins incl. trop. dis ; 21: 1-8, 31/03/2015. graf
Article in English | LILACS, VETINDEX | ID: biblio-1484640

ABSTRACT

Background Phospholipases A 2 (PLA 2 s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA 2isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.


Subject(s)
Animals , Bothrops , Neoplasms/therapy , Crotalid Venoms/pharmacology , Crotalid Venoms/isolation & purification
14.
J. venom. anim. toxins incl. trop. dis ; 21: 44, 31/03/2015. graf
Article in English | LILACS, VETINDEX | ID: biblio-954769

ABSTRACT

Background Phospholipases A 2 (PLA 2 s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA 2isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.(AU)


Subject(s)
Animals , Phospholipases A , Snake Venoms , Cell Cycle , Bothrops , Cell Line, Tumor , In Vitro Techniques
15.
J. venom. anim. toxins incl. trop. dis ; 21: 28, 31/03/2015. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-954764

ABSTRACT

Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA 2 ) from Bothrops atroxvenom, and biochemically characterize these molecules to enable future functional studies.Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing.Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A 2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2 s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA 2 .Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA 2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.(AU)


Subject(s)
Animals , Snake Venoms , Chromatography, High Pressure Liquid , Bothrops , Metalloproteases , Phospholipases A2 , Sequence Analysis, Protein
16.
Biochimie ; 105: 119-28, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25047442

ABSTRACT

Venomous and non-venomous snakes possess phospholipase A2 (PLA2) inhibitory proteins (PLIs) in their blood serum. This study shows the expression and biochemical and functional characterization of a recombinant alpha inhibitor from Bothrops alternatus snake, named rBaltMIP. Its expression was performed in Pichia pastoris heterologous system, resulting in an active recombinant protein. The expressed inhibitor was tested regarding its ability to inhibit the phospholipase activity of different PLA2s, showing slight inhibitions especially at the molar ratios of 1:1 and 1:3 (PLA2:PLI). rBaltMIP was also effective in decreasing the myotoxic activity of the tested toxins at molar ratios greater than 1:0.4 (myotoxin:PLI). The inhibition of the myotoxic activity of different Asp49 (BthTX-II and PrTX-III) and Lys49 (BthTX-I and PrTX-I) myotoxins was also performed without the prior incubation of myotoxins/inhibitor in order to analyze the real possibility of using snake plasma inhibitors or recombinant inhibitors as therapeutic agents for treating envenomations. As a result, rBaltMIP was able to significantly inhibit the myotoxicity of Lys49 myotoxins. Histopathological analysis of the gastrocnemius muscles of mice showed that the myotoxins are able to induce severe damage to the muscle fibers of experimental animals by recruiting a large number of leukocyte infiltrates, besides forming an intense accumulation of intercellular fluid, leading to local edema. When those myotoxins were incubated with rBaltMIP, a reduction of the damage site could be observed. Furthermore, the cytotoxic activity of Asp49 PLA2s and Lys49 PLA2-like enzymes on C2C12 cell lines was decreased, as shown by the higher cell viabilities after preincubation with rBaltMIP. Heterologous expression would enable large-scale obtainment of rBaltMIP, thus allowing further investigations for the elucidation of possible mechanisms of inhibition of snake PLA2s, which have not yet been fully clarified.


Subject(s)
Blood Proteins/biosynthesis , Crotalid Venoms/antagonists & inhibitors , Recombinant Proteins/biosynthesis , Snake Venoms/enzymology , Amino Acid Sequence , Animals , Blood Proteins/genetics , Bothrops/genetics , Crotalid Venoms/chemistry , Mice , Muscle, Skeletal/drug effects , Phospholipases A2/chemistry , Phospholipases A2/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
17.
J Ethnopharmacol ; 155(1): 552-62, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24952279

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Serotherapy against snakebite is often unavailable in some regions over Brazil, where people make use of plants from folk medicine to deal with ophidic accidents. About 10% of Combretum species have some ethnopharmacological use, including treatment of snakebites. MATERIALS AND METHODS: We evaluated the ability of the extract of Combretum leprosum and its component arjunolic acid to reduce some in vivo and in vitro effects of Bothrops jararacussu and Bothrops jararaca venoms. The protocols investigated include phospholipase, proteolytic, collagenase, hyaluronidase, procoagulant, hemorrhagic, edematogenic, myotoxic and lethal activities induced by these venoms in Swiss mice. RESULTS: Oral pre-treatment with arjunolic acid reduced the Bothrops jararacussu lethality in up to 75%, while preincubation prevented the death of all the animals. Hemoconcentration effect of Bothrops jararacussu venom was confirmed two hours after i.p. injection, while preincubation with arjunolic acid preserved the hematocrit levels. Both Combretum leprosum extract and arjunolic acid abolished the myotoxic action of Bothrops jararacussu venom. Preincubation of Bothrops jararacussu venom with the extract or arjunolic acid prevented the increase of plasma creatine kinase activity in mice. The hemorrhagic activity of Bothrops jararaca crude venom was reduced down to about 90% and completely inhibited by preincubation with 10 mg/kg or 100 mg/kg Combretum leprosum extract, respectively, while the preincubation and the pretreatment with 30 mg/kg of arjunolic acid reduced the venom hemorrhagic activity down to about 12% and 58%, respectively. The preincubation of the venom with both extract and 30 mg/kg arjunolic acid significantly reduced the bleeding amount induced by Bothrops jararacussu venom. The extract of Combretum leprosum decreased the edema formation induced by Bothrops jararacussu venom both in preincubation and pretreatment, but not in posttreatment. Similarly, arjunolic acid preincubated with the venom abolished edema formation, while pre- and posttreatment have been partially effective. Some enzymatic activities of Bothrops jararacussu and Bothrops jararaca venoms, i.e. phospholipase A2, collagenase, proteolytic and hyaluronidase activities, were to some extent inhibited by the extract and arjunolic acid in a concentration-dependent manner. CONCLUSIONS: Altogether, our results show that Combretum leprosum extract can inhibit different activities of two important Brazilian snake venoms, giving support for its popular use in folk medicine in the management of venomous snakebites.


Subject(s)
Combretum/chemistry , Crotalid Venoms/antagonists & inhibitors , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Antivenins/administration & dosage , Antivenins/isolation & purification , Antivenins/pharmacology , Bothrops , Brazil , Dose-Response Relationship, Drug , Edema/drug therapy , Edema/etiology , Ethnopharmacology , Hemorrhage/drug therapy , Hemorrhage/etiology , Male , Medicine, Traditional , Mice , Plant Extracts/administration & dosage , Plant Roots , Snake Bites/drug therapy , Snake Bites/physiopathology , Triterpenes/administration & dosage , Triterpenes/isolation & purification
18.
Molecules ; 19(5): 5790-805, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24806579

ABSTRACT

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 µg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 µg/mL) caused irreversible paralysis. Preincubation of TM (200 µg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.


Subject(s)
Blood Proteins/chemistry , Isoflavones/chemistry , Muscle, Skeletal/drug effects , Neuromuscular Blockade , Snake Venoms/toxicity , Animals , Blood Proteins/administration & dosage , Blood Proteins/isolation & purification , Bothrops/metabolism , Brazil , Crotalid Venoms/administration & dosage , Crotalid Venoms/antagonists & inhibitors , Dipteryx/chemistry , Humans , In Vitro Techniques , Isoflavones/administration & dosage , Isoflavones/isolation & purification , Mice , Muscle, Skeletal/pathology , Necrosis/drug therapy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Snake Venoms/chemistry
19.
Biochim Biophys Acta ; 1844(3): 545-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24373874

ABSTRACT

Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process.


Subject(s)
Crotalid Venoms/enzymology , Kallikreins/metabolism , Metalloproteases/metabolism , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Bothrops , Hydrolysis , Kinetics , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/metabolism , Prolyl Oligopeptidases , Radioimmunoassay , Substrate Specificity
20.
Proteins ; 79(1): 61-78, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20878713

ABSTRACT

Phospholipases A2 (PLA2s) are enzymes responsible for membrane disruption through Ca(2+) -dependent hydrolysis of phospholipids. Lys49-PLA2s are well-characterized homologue PLA2s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLA2s were first believed to present residual catalytic activity but experiments with a recombinant toxin show they are incapable of catalysis. Herein, we present a new homologue Asp49-PLA2 (BthTX-II) that is also able to exert muscle damage. This toxin was isolated in 1992 and characterized as presenting very low catalytic activity. Interestingly, this myotoxic homologue Asp49-PLA2 conserves all the residues responsible for Ca(2+) coordination and of the catalytic network, features thought to be fundamental for PLA2 enzymatic activity. Previous crystallographic studies of apo BthTX-II suggested this toxin could be catalytically inactive since a distortion in the calcium binding loop was observed. In this article, we show BthTX-II is not catalytic based on an in vitro cell viability assay and time-lapse experiments on C2C12 myotube cell cultures, X-ray crystallography and phylogenetic studies. Cell culture experiments show that BthTX-II is devoid of catalytic activity, as already observed for Lys49-PLA2s. Crystallographic studies of the complex BthTX-II/Ca(2+) show that the distortion of the calcium binding loop is still present and impairs ion coordination even though Ca(2+) are found interacting with other regions of the protein. Phylogenetic studies demonstrate that BthTX-II is more phylogenetically related to Lys49-PLA2s than to other Asp49-PLA2s, thus allowing Crotalinae subfamily PLA2s to be classified into two main branches: a catalytic and a myotoxic one.


Subject(s)
Crotalid Venoms/chemistry , Group II Phospholipases A2/chemistry , Phospholipases A2/chemistry , Phospholipases A2/toxicity , Animals , Bothrops , Cell Line , Computational Biology , Crystallography, X-Ray , Cytotoxins/chemistry , Cytotoxins/genetics , Cytotoxins/toxicity , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Phospholipases A2/genetics , Phylogeny , Protein Structure, Tertiary , Structural Homology, Protein , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...