Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Hum Neurosci ; 18: 1409250, 2024.
Article in English | MEDLINE | ID: mdl-38911226

ABSTRACT

Importance: Brain fog is associated with significant morbidity and reduced productivity and gained increasing attention after COVID-19. However, this subjective state has not been systematically characterised. Objective: To characterise self-reported brain fog. Design: We systematically studied the cross-sectional associations between 29 a priori variables with the presence of "brain fog." The variables were grouped into four categories: demographics, symptoms and functional impairments, comorbidities and potential risk factors (including lifestyle factors), and cognitive score. Univariate methods determined the correlates of brain fog, with long-COVID and non-long-COVID subgroups. XGBoost machine learning model retrospectively characterised subjective brain fog. Bonferroni-corrected statistical significance was set at 5%. Setting: Digital application for remote data collection. Participants: 25,796 individuals over the age of 18 who downloaded and completed the application. Results: 7,280 of 25,796 individuals (28.2%) reported experiencing brain fog, who were generally older (mean brain fog 35.7 ± 11.9 years vs. 32.8 ± 11.6 years, p < 0.0001) and more likely to be female (OR = 1.2, p < 0.001). Associated symptoms and functional impairments included difficulty focusing or concentrating (OR = 3.3), feeling irritable (OR = 1.6), difficulty relaxing (OR = 1.2, all p < 0.0001), difficulty following conversations (OR = 2.2), remembering appointments (OR = 1.9), completing paperwork and performing mental arithmetic (ORs = 1.8, all p < 0.0001). Comorbidities included long-COVID-19 (OR = 3.8, p < 0.0001), concussions (OR = 2.4, p < 0.0001), and higher migraine disability assessment scores (MIDAS) (+34.1%, all p < 0.0001). Cognitive scores were marginally lower with brain fog (-0.1 std., p < 0.001). XGBoost achieved a training accuracy of 85% with cross-validated accuracy of 74%, and the features most predictive of brain fog in the model were difficulty focusing and following conversations, long-COVID, and severity of migraines. Conclusions and relevance: This is the largest study characterising subjective brain fog as an impairment of concentration associated with functional impairments in activities of daily living. Brain fog was particularly associated with a history of long-COVID-19, migraines, concussion, and with 0.1 standard deviations lower cognitive scores, especially on modified Stroop testing, suggesting impairments in the ability to inhibit cognitive interference. Further prospective studies in unselected brain fog sufferers should explore the full spectrum of brain fog symptoms to differentiate it from its associated conditions.

2.
Ann Neurol ; 96(1): 121-132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709569

ABSTRACT

OBJECTIVE: Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS: Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS: A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.


Subject(s)
Illusions , Magnetic Resonance Imaging , Humans , Male , Female , Illusions/physiology , Middle Aged , Aged , Adult , Thalamus/surgery , Thalamus/diagnostic imaging , Ventral Thalamic Nuclei/surgery , Ventral Thalamic Nuclei/diagnostic imaging , Aged, 80 and over
3.
Neuromodulation ; 26(7): 1339-1361, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37452800

ABSTRACT

BACKGROUND: Falls in extrapyramidal disorders, particularly Parkinson's disease (PD), multisystem atrophy (MSA), and progressive supranuclear palsy (PSP), are key milestones affecting patients' quality of life, incurring increased morbidity/mortality and high healthcare costs. Unfortunately, gait and balance in parkinsonisms respond poorly to currently available treatments. A serendipitous observation of improved gait and balance in patients with PD receiving spinal cord stimulation (SCS) for back pain kindled an interest in using SCS to treat gait disorders in parkinsonisms. OBJECTIVES: We reviewed preclinical and clinical studies of SCS to treat gait dysfunction in parkinsonisms, covering its putative mechanisms and efficacies. MATERIALS AND METHODS: Preclinical studies in animal models of PD and clinical studies in patients with PD, PSP, and MSA who received SCS for gait disorders were included. The main outcome assessed was clinical improvement in gait, together with outcome measures used and possible mechanism of actions. RESULTS: We identified 500 references, and 45 met the selection criteria and have been included in this study for analysis. Despite positive results in animal models, the outcomes in human studies are inconsistent. CONCLUSIONS: The lack of blind and statistically powered studies, the heterogeneity in patient selection and study outcomes, and the poor understanding of the underlying mechanisms of action of SCS are some of the limiting factors in the field. Addressing these limitations will allow us to draw more reliable conclusions on the effects of SCS on gait and balance in extrapyramidal disorders.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Spinal Cord Stimulation , Humans , Parkinson Disease/therapy , Spinal Cord Stimulation/methods , Quality of Life , Multiple System Atrophy/therapy , Gait
4.
Article in English | MEDLINE | ID: mdl-37005519

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disease. Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease, and several treatments targeting mitochondria have been tested in these patients to delay disease progression and tackle disease symptoms. Herein, we review available data from randomised, double-blind clinical studies that have investigated the role of compounds targeting mitochondria in idiopathic Parkinson's disease patients, with a view of providing patients and clinicians with a comprehensive and practical paper that can inform therapeutic interventions in this group of people. A total of 9 compounds have been tested in randomized clinical trials, but only exenatide has shown some promising neuroprotective and symptomatic effects. However, whether this evidence can be translated into daily clinical practice still needs to be confirmed. In conclusion, targeting mitochondrial dysfunction in Parkinson's disease is a promising therapeutic approach, although only one compound has shown a positive effect on Parkinson's disease progression and symptoms. New compounds have been investigated in animal models, and their efficacy needs to be confirmed in humans through robust, randomised, double-blind clinical trials.

5.
J Neurol Sci ; 442: 120414, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36116217

ABSTRACT

People with Parkinson's disease (PD) develop postural imbalance and falls. Galvanic Vestibular Stimulation (GVS) may potentially improve postural balance in humans and hence reduce falls in PD. This systematic review and meta-analysis investigate the effects of GVS on postural balance in PD. Six separate databases and research registers were searched for cross-over design trials that evaluated the effects of GVS on postural balance in PD. We used standardized mean difference (Hedges' g) as a measure of effect size in all studies. We screened 223 studies, evaluated 14, of which five qualified for the meta-analysis. Among n = 40 patients in five studies (range n = 5 to 13), using a fixed effects model we found an effect size estimate of g = 0.43 (p < 0.001, 95% CI [0.29,0.57]). However, the test for residual heterogeneity was significant (p < 0.001), thus we used a random effects model and found a pooled effect size estimate of 0.62 (p > 0.05, 95% CI [- 0.17, 1.41], I2 = 96.21%). Egger's test was not significant and thus trim and funnel plot indicated no bias. To reduce heterogeneity, we performed sensitivity analysis and by removing one outlier study (n = 7 patients), we found an effect size estimate of 0.16 (p < 0.05, 95% CI [0.01, 0.31], I2 = 0%). Our meta-analysis found GVS has a favourable effect on postural balance in PD patients, but due to limited literature and inconsistent methodologies, this favourable effect must be interpreted with caution.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Postural Balance/physiology
6.
Front Digit Health ; 4: 1029810, 2022.
Article in English | MEDLINE | ID: mdl-36620187

ABSTRACT

Background: The Clinical Dementia Rating (CDR) and Mini-Mental State Examination (MMSE) are useful screening tools for mild cognitive impairment (MCI). However, these tests require qualified in-person supervision and the CDR can take up to 60 min to complete. We developed a digital cognitive screening test (M-CogScore) that can be completed remotely in under 5 min without supervision. We set out to validate M-CogScore in head-to-head comparisons with CDR and MMSE. Methods: To ascertain the validity of the M-CogScore, we enrolled participants as healthy controls or impaired cognition, matched for age, sex, and education. Participants completed the 30-item paper MMSE Second Edition Standard Version (MMSE-2), paper CDR, and smartphone-based M-CogScore. The digital M-CogScore test is based on time-normalised scores from smartphone-adapted Stroop (M-Stroop), digit-symbols (M-Symbols), and delayed recall tests (M-Memory). We used Spearman's correlation coefficient to determine the convergent validity between M-CogScore and the 30-item MMSE-2, and non-parametric tests to determine its discriminative validity with a CDR label of normal (CDR 0) or impaired cognition (CDR 0.5 or 1). M-CogScore was further compared to MMSE-2 using area under the receiver operating characteristic curves (AUC) with corresponding optimal cut-offs. Results: 72 participants completed all three tests. The M-CogScore correlated with both MMSE-2 (rho = 0.54, p < 0.0001) and impaired cognition on CDR (Mann Whitney U = 187, p < 0.001). M-CogScore achieved an AUC of 0.85 (95% bootstrapped CI [0.80, 0.91]), when differentiating between normal and impaired cognition, compared to an AUC of 0.78 [0.72, 0.84] for MMSE-2 (p = 0.21). Conclusion: Digital screening tests such as M-CogScore are desirable to aid in rapid and remote clinical cognitive evaluations. M-CogScore was significantly correlated with established cognitive tests, including CDR and MMSE-2. M-CogScore can be taken remotely without supervision, is automatically scored, has less of a ceiling effect than the MMSE-2, and takes significantly less time to complete.

7.
Radiol Med ; 126(5): 698-706, 2021 May.
Article in English | MEDLINE | ID: mdl-33392980

ABSTRACT

OBJECTIVE: Retinal nerve fiber layer thickness (RNFL) is a biomarker of neuroaxonal loss and index of visual function in multiple sclerosis (MS). We aimed to assess the correlation between radiomic features and RNFL, visual acuity (VA) at patients' presentation, visual outcome (VO), and clinical diagnosis. METHODS: We reviewed imaging and clinical data of 25 patients with a first episode of optic neuritis (ON) (14 females, 11 males; 5 bilateral ON; 7 left ON; 13 right ON). All patients underwent a complete ophthalmological assessment, including visual acuity and RNFL, neurological evaluation, orbits MRI. Segmentation of the optic nerves was performed through 3D slicer open software to get radiomics analysis. All patients underwent a complete neuro-ophthalmological follow-up at 6 months to assess the VO, classified as: complete recovery, partial recovery, deficit persistence/relapse, or visual worsening and were diagnosed as MS or clinically isolated syndrome. RESULTS: We observed significant correlations between radiomic features and RNFL and between radiomic features and VA. Regression model analysis identified 1 radiomic feature with significant association with VO (Gray Level non-uniformity Normalized, p = 0.004) and 6 radiomic features with significant correlation with diagnosis (High Gray Level Zone Emphasis, p < 0.001; Entropy, p < 0.001, for T1 segmentation; Mean Absolute Deviation, p < 0.001; Coarseness < 0.001; Small Area Low Gray Level Emphasis, p < 0.001; Contrast, p = 0.008, for STIR segmentation). CONCLUSION: Orbits MRI analysis at the first episode of ON has the potential to assess the visual function and VO in ON patients, and predict MS development.


Subject(s)
Demyelinating Diseases/diagnosis , Magnetic Resonance Imaging/methods , Optic Neuritis/diagnostic imaging , Acute Disease , Adult , Female , Humans , Imaging, Three-Dimensional , Male , Multiple Sclerosis/diagnosis , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Optic Neuritis/pathology , Predictive Value of Tests , Recovery of Function , Visual Acuity
8.
Radiol Med ; 124(12): 1296-1303, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31435862

ABSTRACT

AIM: Our aim was to assess MRI findings in the acute phase of ON and their correlation with visual acuity at presentation, visual outcome (VO) and MS development, to analyze a possible correlation between lesions number and diagnosis, and to assess correlation between orbits MRI and OCT. MATERIALS AND METHODS: We retrospectively studied 37 patients, who presented to our Emergency Department with an ON first episode from January 2015 to January 2017. Patients underwent immediately a complete neuro-ophthalmological evaluation, blood test, CSF analysis. MRI of brain, orbits, cervical spine was executed within 7 days from ON onset. Brain MRI was classified as: normal, non-specific, suspected demyelination, lesions with dissemination in space and time. Optic nerves findings were localized in three sites (intra-orbital, canalicular and chiasmal) and classified as: normal, STIR- alteration, altered contrast enhancement. Patients underwent neuro-ophthalmological follow-up and MRI at 6 months to assess VO (complete recovery, partial recovery, deficit persistence). Another follow-up at 1 year was performed to identify MS or clinically isolated syndrome (CIS). RESULTS: 64.8% patients received a diagnosis of MS; 35% of CIS. Lesions of the optic nerve were found in 65.8%. We observed statistically significant correlation between brain MRI pattern and diagnosis and between lesions number and diagnosis. We observed a statistically significant correlation between orbital MRI pattern and optical coherence tomography (OCT) results. MRI brain findings correlate with development of MS. MRI brain features and lesions number can predict the risk of MS conversion.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Optic Neuritis/diagnostic imaging , Acute Disease , Adult , Diagnostic Techniques, Ophthalmological , Emergency Service, Hospital , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Sclerosis/etiology , Optic Nerve/diagnostic imaging , Optic Neuritis/drug therapy , Retrospective Studies , Statistics, Nonparametric , Steroids/therapeutic use , Time Factors , Tomography, Optical Coherence , Visual Acuity , Young Adult
9.
Brain Stimul ; 11(3): 558-565, 2018.
Article in English | MEDLINE | ID: mdl-29352669

ABSTRACT

BACKGROUND: Biphasic pulses produced by most commercially available TMS machines have a cosine waveform, which makes it difficult to study the interaction between the two phases of stimulation. OBJECTIVE: We used a controllable pulse TMS (cTMS) device delivering quasi-rectangular pulse outputs to investigate whether monophasic are more effective than biphasic pulses. METHODS: Temporally symmetric ("biphasic") or highly asymmetric ("monophasic") charge-balanced biphasic stimuli were used to target the hand area of motor cortex in the anterior-posterior (AP) or posterior-anterior (PA) initial current direction. RESULTS: We observed the lowest motor thresholds and shortest motor evoked potential (MEP) latencies with initial PA pulses, and highest thresholds and longest latencies with AP pulses. Increasing pulse symmetry tended to increase threshold with a PA direction whereas it lowered thresholds and shortened latencies with an AP direction. Furthermore, it steepened the MEP input-output curve with both directions. CONCLUSIONS: "Biphasic" TMS pulses can be viewed as two monophasic pulses of opposite directions, each stimulating a different set of interneurons with different thresholds (PA < AP). At threshold, the reverse phase of an initially PA pulse increases threshold compared with "monophasic" stimulation. At higher intensities, the reverse phase begins to activate AP-sensitive neurones and increase the effectiveness of stimulation above that of a "monophasic" PA pulse. "Biphasic" stimulation with initially AP pulses is dominated at threshold by activation produced by the lower threshold reverse (PA) phase. SIGNIFICANCE: The effects of biphasic stimulation are best understood as the summed output of two independent sets of directionally selective neural populations.


Subject(s)
Evoked Potentials, Motor/physiology , Interneurons/physiology , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Adult , Differential Threshold , Female , Humans , Male , Transcranial Magnetic Stimulation/instrumentation , Young Adult
10.
Brain Stimul ; 11(2): 289-298, 2018.
Article in English | MEDLINE | ID: mdl-29146468

ABSTRACT

BACKGROUND: Measurements and models of current flow in the brain during transcranial Direct Current Stimulation (tDCS) indicate stimulation of regions in-between electrodes. Moreover, the folded cortex results in local fluctuations in current flow intensity and direction, and animal studies suggest current flow direction relative to cortical columns determines response to tDCS. METHODS: Here we test this idea by using Transcranial Magnetic Stimulation Motor Evoked Potentials (TMS-MEP) to measure changes in corticospinal excitability following tDCS applied with electrodes aligned orthogonal (across) or parallel to M1 in the central sulcus. RESULTS: Current flow models predicted that the orthogonal electrode montage produces consistently oriented current across the hand region of M1 that flows along cortical columns, while the parallel electrode montage produces non-uniform current directions across the M1 cortical surface. We find that orthogonal, but not parallel, orientated tDCS modulates TMS-MEPs. We also show modulation is sensitive to the orientation of the TMS coil (PA or AP), which is thought to select different afferent pathways to M1. CONCLUSIONS: Our results are consistent with tDCS producing directionally specific neuromodulation in brain regions in-between electrodes, but shows nuanced changes in excitability that are presumably current direction relative to column and axon pathway specific. We suggest that the direction of current flow through cortical target regions should be considered for targeting and dose-control of tDCS.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , Adult , Afferent Pathways/physiology , Axons/physiology , Electromyography/methods , Female , Humans , Male , Thinking/physiology , Young Adult
11.
Neuroradiol J ; 31(1): 69-82, 2018 02.
Article in English | MEDLINE | ID: mdl-28379073

ABSTRACT

Myelin oligodendrocyte glycoprotein is a protein exclusively expressed on the surface of oligodendrocytes and myelin in the central nervous system. Antibodies against myelin oligodendrocyte glycoprotein were initially detected in children with demyelinating syndromes, and more recently reported in a broad spectrum of central nervous system demyelinating diseases in adults, including neuromyelitis optica spectrum disorders and bilateral optic neuritis. Patients with myelin oligodendrocyte glycoprotein antibody-associated demyelination appear to have unique clinical and radiological features. To the best of our knowledge a series of Italian patients with optic neuritis and positivity to myelin oligodendrocyte glycoprotein antibodies has not yet been reported and the paper on myelin oligodendrocyte glycoprotein antibodies are more focused on clinical features, diagnosis and outcome than on the radiological appearance, so we want to retrospectively report magnetic resonance imaging features of a group of eight patients, who came to our Ophthalmologic Emergency Department for optic neuritis and were found seropositive for myelin oligodendrocyte glycoprotein antibodies, comparing our data with the findings described in the literature.


Subject(s)
Autoantibodies/immunology , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/immunology , Optic Neuritis/diagnostic imaging , Optic Neuritis/immunology , Tomography, X-Ray Computed , Adult , Contrast Media , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Organometallic Compounds , Recurrence , Retrospective Studies
12.
Clin Neurophysiol ; 127(1): 675-683, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26077634

ABSTRACT

OBJECTIVE: To compare the strength-duration (S-D) time constants of motor cortex structures activated by current pulses oriented posterior-anterior (PA) or anterior-posterior (AP) across the central sulcus. METHODS: Motor threshold and input-output curve, along with motor evoked potential (MEP) latencies, of first dorsal interosseus were determined at pulse widths of 30, 60, and 120 µs using a controllable pulse parameter (cTMS) device, with the coil oriented PA or AP. These were used to estimate the S-D time constant and we compared with data for responses evoked by cTMS of the ulnar nerve at the elbow. RESULTS: The S-D time constant with PA was shorter than for AP stimulation (230.9 ± 97.2 vs. 294.2 ± 90.9 µs; p<0.001). These values were similar to those calculated after stimulation of ulnar nerve (197 ± 47 µs). MEP latencies to AP, but not PA stimulation were affected by pulse width, showing longer latencies following short duration stimuli. CONCLUSION: PA and AP stimuli appear to activate the axons of neurons with different time constants. Short duration AP pulses are more selective than longer pulses in recruiting longer latency corticospinal output. SIGNIFICANCE: More selective stimulation of neural elements may be achieved by manipulating pulse width and orientation.


Subject(s)
Brain Waves/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle Strength/physiology , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Male , Time Factors , Transcranial Magnetic Stimulation/instrumentation , Young Adult
14.
J Physiol ; 592(16): 3345-69, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24907311

ABSTRACT

Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists.


Subject(s)
Cerebellum/physiology , Deep Brain Stimulation/methods , Electric Stimulation Therapy/methods , Spinal Cord/physiology , Transcranial Magnetic Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Animals , Humans
15.
NeuroRehabilitation ; 34(1): 121-7, 2014.
Article in English | MEDLINE | ID: mdl-24284464

ABSTRACT

BACKGROUND: The debilitating fatigue that patients with multiple sclerosis (MS) commonly experience during day-to-day living activities responds poorly to current therapeutic options. Direct currents (DC) delivered through the scalp (transcranial DC stimulation or tDCS) at weak intensities induce changes in motor cortical excitability that persist for almost an hour after current offset and depend on current polarity. tDCS successfully modulates cortical excitability in various clinical disorders but no information is available for MS related fatigue. OBJECTIVE: In this study we aimed to assess fatigue symptom after five consecutive sessions of anodal tDCS applied over the motor cortex in patients with MS. METHODS: We enrolled 25 patients with MS all of whom experienced fatigue. We delivered anodal and sham tDCS in random order in two separate experimental sessions at least 1 month apart. The stimulating current was delivered for 15 minutes once a day for 5 consecutive days. In each session the Fatigue Impact Scale (FIS) and the Back Depression Inventory (BDI) were administered before the treatment (baseline), immediately after treatment on day five (T1), one week (T2) and three weeks (T3) after the last tDCS session. RESULTS: All patients tolerated tDCS well without adverse events. The fatigue score significantly decreased after anodal tDCS in 65% of the patients (responders). After patients received tDCS for 5 days their FIS scores improved by about 30% and the tDCS-induced benefits persisted at T2 and T3. CONCLUSION: Our preliminary findings suggest that anodal tDCS applied over the motor cortex, could improve fatigue in most patients with MS.


Subject(s)
Electric Stimulation Therapy , Fatigue/therapy , Multiple Sclerosis/therapy , Adult , Aged , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
16.
Front Psychiatry ; 3: 63, 2012.
Article in English | MEDLINE | ID: mdl-22783208

ABSTRACT

In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability ("brain polarization" or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS) on somatosensory potentials (SEPs) evoked in healthy subjects by posterior tibial nerve (PTN) stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30) without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials (LEPs), tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic, and segmental motor systems. Here we review currently available experimental evidence that non-invasive spinal cord stimulation (SCS) influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive SCS in managing various pathologic conditions, including pain.

17.
Neurosci Lett ; 498(2): 167-70, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21600266

ABSTRACT

Transcranial direct current stimulation (tDCS), a technique for central neuromodulation, has been recently proposed as possible treatment in several neurological and psychiatric diseases. Although shifts on focal brain excitability have been proposed to explain the clinical effects of tDCS, how tDCS-induced functional changes influence cortical interneurones is still largely unknown. The assessment of short latency afferent inhibition (SLAI) of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS), provides the opportunity to test non-invasively interneuronal cholinergic circuits in the human motor cortex. The aim of the present study was to assess whether anodal tDCS can modulate interneuronal circuits involved in SLAI. Resting motor threshold (RMT), amplitude of unconditioned MEPs and SLAI were assessed in the dominant hemisphere of 12 healthy subjects (aged 21-37) before and after anodal tDCS (primary motor cortex, 13min, 1mA). SLAI was assessed delivering electrical conditioning stimuli to the median nerve at the wrist prior to test TMS given at the interstimulus interval (ISI) of 2ms. Whereas RMT and the amplitude of unconditioned MEPs did not change after anodal tDCS, SLAI significantly increased. In conclusion, anodal tDCS-induced effects depend also on the modulation of cortical interneuronal circuits. The enhancement of cortical cholinergic activity assessed by SLAI could be an important mechanism explaining anodal tDCS action in several pathological conditions.


Subject(s)
Afferent Pathways/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Transcutaneous Electric Nerve Stimulation/methods , Adult , Cholinergic Fibers/physiology , Electrodes , Female , Humans , Interneurons/physiology , Male , Median Nerve/physiology , Neural Conduction , Reaction Time , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...