Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Biology (Basel) ; 13(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392333

ABSTRACT

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511435

ABSTRACT

The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.


Subject(s)
Metabolic Diseases , Mitochondria , Humans , Mitochondria/metabolism , Adipose Tissue/metabolism , Aging/metabolism , Cellular Senescence , Obesity/metabolism , Metabolic Diseases/metabolism
4.
Nutrients ; 15(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513513

ABSTRACT

Combining exercise with fasting is known to boost fat mass-loss, but detailed analysis on the consequential mobilization of visceral and subcutaneous WAT-derived fatty acids has not been performed. In this study, a subset of fasted male rats (66 h) was submitted to daily bouts of mild exercise. Subsequently, by using gas chromatography-flame ionization detection, the content of 22 fatty acids (FA) in visceral (v) versus subcutaneous (sc) white adipose tissue (WAT) depots was compared to those found in response to the separate events. Findings were related to those obtained in serum and liver samples, the latter taking up FA to increase gluconeogenesis and ketogenesis. Each separate intervention reduced scWAT FA content, associated with increased levels of adipose triglyceride lipase (ATGL) protein despite unaltered AMP-activated protein kinase (AMPK) Thr172 phosphorylation, known to induce ATGL expression. The mobility of FAs from vWAT during fasting was absent with the exception of the MUFA 16:1 n-7 and only induced by combining fasting with exercise which was accompanied with reduced hormone sensitive lipase (HSL) Ser563 and increased Ser565 phosphorylation, whereas ATGL protein levels were elevated during fasting in association with the persistently increased phosphorylation of AMPK at Thr172 both during fasting and in response to the combined intervention. As expected, liver FA content increased during fasting, and was not further affected by exercise, despite additional FA release from vWAT in this condition, underlining increased hepatic FA metabolism. Both fasting and its combination with exercise showed preferential hepatic metabolism of the prominent saturated FAs C:16 and C:18 compared to the unsaturated FAs 18:1 n-9 and 18:2 n-6:1. In conclusion, depot-specific differences in WAT fatty acid molecule release during fasting, irrelevant to their degree of saturation or chain length, are mitigated when combined with exercise, to provide fuel to surrounding organs such as the liver which is correlated with increased ATGL/ HSL ratios, involving AMPK only in vWAT.


Subject(s)
Fatty Acids , Sterol Esterase , Rats , Male , Animals , Sterol Esterase/metabolism , Fatty Acids/metabolism , AMP-Activated Protein Kinases/metabolism , Lipase/metabolism , Lipolysis/physiology , Obesity/metabolism , Fasting/metabolism , Adipose Tissue/metabolism
5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111329

ABSTRACT

Metabolic syndrome and obesity have become important health issues of epidemic proportions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension, and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. An ample body of evidence indicates that in some pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine (T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on the brown and/or white adipose tissues to induce uncoupled respiration through the induction of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that 3,3',5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots, causing the activation of a process known as "browning". Moreover, in vivo studies on adipose tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascularization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review, we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and insulin resistance.

6.
Front Cell Dev Biol ; 11: 1101844, 2023.
Article in English | MEDLINE | ID: mdl-36875756

ABSTRACT

Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.

7.
J Exp Zool A Ecol Integr Physiol ; 337(9-10): 1025-1038, 2022 12.
Article in English | MEDLINE | ID: mdl-35927786

ABSTRACT

The Harderian gland (HG) of Rattus norvegicus is an orbital gland secreting lipids that accumulate in excess under condition of increased lipid metabolism. To study the response elicitated by lipid overload in rat HG, we housed the animals in thermoneutral conditions (28-30°C) in association to high fat diet (HFD). In HFD rats alterated blood lipid levels result in lipid accumulation in HG as demonstrated by the increased gland weight and histochemical/ultrastructural analyses. The HFD-caused oxidative stress forces the gland to trigger antioxidant defense mechanisms and autophagic process, such as lipophagy and mitophagy. Induction of mitochondrial DNA (mtDNA) damage and repair was stronger in HFD-rat HGs. An increase in marker expression levels of mitochondrial biogenesis, fission, and fusion occurred to counteract mtDNA copy number reduction and mitophagy. Therefore, the results demonstrate that rat HG activates autophagy as survival strategy under conditions of increased lipid metabolism and suggest a key role for mitophagy and membrane dynamics in the mitochondrial adaptive response to HFD.


Subject(s)
Diet, High-Fat , Harderian Gland , Rats , Animals , Diet, High-Fat/adverse effects , Harderian Gland/metabolism , Autophagy/physiology , DNA, Mitochondrial/metabolism , Lipids
8.
Gen Comp Endocrinol ; 328: 114104, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35973585

ABSTRACT

High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.


Subject(s)
Antioxidants , Diet, High-Fat , Animals , Antioxidants/metabolism , Autophagy/genetics , Catalase/metabolism , Catalase/pharmacology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/pharmacology , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress , Protein Kinases/metabolism , Protein Kinases/pharmacology , Rats , Testis/metabolism
9.
Animals (Basel) ; 12(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35883387

ABSTRACT

The morphological features and relative number of mast cells (MCs) were studied in the skin and exorbital lacrimal glands of hypothyroid Wistar rats, Rattus norvegicus. Hypothyroidism significantly increased the number of MCs (up to 4.5-fold) and histamine content (up to 50%) in the examined tissues. The magnitude of the increase in the number of MCs was greater in the cheek skin and exorbital lacrimal glands than in the back skin. In the skin, the MCs were mainly located within the hypodermis and closely associated with the blood vessels, nerve fascicles, and adipocytes. In the exorbital lacrimal gland, which is a seromucous gland located lateral to the cheek below the ear, the MCs were distributed in the connective tissue surrounding the acini. The secretory granules of MCs showed histochemical characteristics of connective tissue MCs. They were metachromatic with Toluidine blue and safranin positive with the Alcian blue/safranin reactions. Finally, a significant increase in degranulating MCs was observed in hypothyroid tissues, relative to euthyroid tissues. At the ultrastructural level, the MCs of euthyroid rats were predominantly non-degranulating (Stage I). In hypothyroid animals, numerous MCs showed partial degranulation (Stage II-III) or were in a stage of complete degranulation. Our results concerning the skin and exorbital lacrimal gland suggested that the thyroid status might be involved in regulating the frequency and activation state of MCs.

10.
FASEB J ; 36(5): e22325, 2022 05.
Article in English | MEDLINE | ID: mdl-35452152

ABSTRACT

The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.


Subject(s)
Insulin Resistance , Adipokines/metabolism , Adipose Tissue, White/metabolism , Animals , Inflammation/metabolism , Insulin/metabolism , Lipolysis , Mice , Mice, Knockout , Triglycerides/metabolism , Uncoupling Protein 3/metabolism
11.
J Endocrinol ; 253(3): 115-132, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35289766

ABSTRACT

Thyroid dysfunctions are associated with liver diseases ranging, in severity, from insulin resistance (IR) to hepatocellular carcinoma. The pathogenic mechanisms appear complex and are not attributable, exclusively, to the impaired thyroid hormone (TH) signalling. Using a mouse model of human congenital hypothyroidism, young double heterozygote for both NK2 homeobox 1 (Nkx2-1)- and Paired box 8 (Pax8)-null mutations (DHTP) mice, and single heterozygous Pax8+/- and Nkx2-1+/- mice, we studied the liver pathways, the endocrine and metabolic factors affected in conditions of different dysthyroidisms. Young Nkx2-1+/- females displayed a slight hyperthyroidism and, in liver, increased TH signalling (i.e. increased expression of Dio1 and Trß1) and lipogenic gene expression, with triglycerides accumulation. Hypothyroid DHTP and euthyroid Pax8+/- females shared liver and skeletal muscle IR and hepatic hypothyroidism (i.e. reduced expression of Mct8, Dio1 and TRß1), activation of AKT and increased expression of glutathione peroxidase 4. Oxidative stress and reduced mitochondrial COX activity were observed in DHTP mice only. Pax8+/- females, but, unexpectedly, not DHTP ones, displayed transcriptional activation of the hepatic (and renal) gluconeogenic pathway, hypercortisolemia, fasting hyperglycaemia and hyperinsulinemia, reduced serum ß-hydroxybutyrate, associated with hepatic AMPK activation. DHTP mice showed hypercholesterolemia and activation of mTOR. Collectively, the data indicate that heterozygote mutations of Pax8 and Nkx2-1 genes may produce multiple dysmetabolisms, even under systemic euthyroidism. Differential liver pathways and multiple hormonal axes are affected with implications for energy and nutrient homeostasis. The identified players may be specific target in the management of thyroid dysfunction-associated dysmetabolisms in terms of prevention/counteraction of IR, type 2 diabetes and related comorbidities.


Subject(s)
Congenital Hypothyroidism , Diabetes Mellitus, Type 2 , Animals , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/pathology , Diabetes Mellitus, Type 2/metabolism , Female , Haploinsufficiency , Liver/metabolism , Metabolic Networks and Pathways , Mice , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism , Thyroid Nuclear Factor 1
12.
Nutrients ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35334826

ABSTRACT

Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.


Subject(s)
Amino Acids, Branched-Chain , Brain-Derived Neurotrophic Factor , Animals , Brain-Derived Neurotrophic Factor/metabolism , Chromatography, Liquid , Fasting , Male , Mammals/metabolism , Muscle, Skeletal/metabolism , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , TOR Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Thyroid Hormones/metabolism
13.
Cells ; 11(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35326451

ABSTRACT

Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.


Subject(s)
Mitochondria , Thyroid Hormones , Energy Metabolism/physiology , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Thyroid Hormones/metabolism
14.
Genes (Basel) ; 13(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35205361

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28-30 °C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Diseases , Animals , DNA, Mitochondrial/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Liver Diseases/metabolism , Mitochondria/metabolism , Rats
15.
Reprod Biol ; 22(1): 100601, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032869

ABSTRACT

D-Aspartate (D-Asp) and its methylated form N-methyl-d-aspartate (NMDA) promote spermatogenesis by stimulating the biosynthesis of sex steroid hormones. d-Asp also induces spermatogonia proliferation directly by activating the ERK/Aurora B pathway. In the present study, a mouse spermatocyte-derived cell line (GC-2) which represents a stage between preleptotene spermatocyte and round spermatids was exposed to 200 µM d-Asp or 50 µM NMDA for 30 min, 2 h, and 4 h to explore the influence of these amino acids on cell proliferation and mitochondrial activities occurring during this process. By Western blotting analyses, the expressions of AMPAR (GluA1-GluA2/3 subunits), cell proliferation as well as mitochondria functionality markers were determined at different incubation times. The results revealed that d-Asp or NMDA stimulate proliferation and meiosis in the GC-2 cells via the AMPAR/ERK/Akt pathway, which led to increased levels of the PCNA, p-H3, and SYCP3 proteins. The effects of d-Asp and NMDA on the mitochondrial functionality of the GC-2 cells strongly suggested an active role of these amino acids in germ cell maturation. In both d-Asp- and NMDA-treated GC-2 cells mitochondrial biogenesis as well as mitochondrial fusion are increased while mitochondria fission is inhibited. Finally, the findings showed that NMDA significantly increased the expressions of the CII, CIII, CIV, and CV complexes of oxidative phosphorylation system (OXPHOS), whereas d-Asp induced a significant increase in the expressions only of the CIV and CV complexes. The present study provides novel insights into the mechanisms underlying the role of d-Asp and NMDA in promoting spermatogenesis.


Subject(s)
D-Aspartic Acid , N-Methylaspartate , Animals , D-Aspartic Acid/metabolism , D-Aspartic Acid/pharmacology , Male , Mice , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Spermatocytes/metabolism , Spermatogenesis , Spermatogonia/metabolism
16.
Cancers (Basel) ; 13(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34503298

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) frequently presents when surgical intervention is no longer feasible. Despite local treatment with curative intent, patients might experience disease recurrence. In this context, accurate non-invasive biomarkers are urgently needed. We report the results of a pilot study on the diagnostic and prognostic role of circulating tumor cells (CTCs) in operable NSCLC. METHODS: Blood samples collected from healthy volunteers (n = 10), nodule-negative high-risk individuals enrolled in a screening program (n = 7), and NSCLC patients (n = 74) before surgery were analyzed (4 mL) for the presence of cells with morphological features of malignancy enriched through the ISET® technology. RESULTS: CTC detection was 60% in patients, while no target cells were found in lung cancer-free donors. We identified single CTCs (sCTC, 46%) and clusters of CTCs and leukocytes (heterotypic clusters, hetCLU, 31%). The prevalence of sCTC (sCTC/4 mL ≥ 2) or the presence of hetCLU predicted the risk of disease recurrence within the cohort of early-stage (I-II, n = 52) or advanced stage cases (III-IVA, n = 22), respectively, while other tumor-related factors did not inform prognosis. CONCLUSIONS: Cancer cell hematogenous dissemination occurs frequently in patients with NSCLC without clinical evidence of distant metastases, laying the foundation for the application of cell-based tests in screening programs. CTC subpopulations are fine prognostic classifiers whose clinical validity should be further investigated in larger studies.

17.
J Alzheimers Dis ; 83(3): 977-1001, 2021.
Article in English | MEDLINE | ID: mdl-34420962

ABSTRACT

Oxidative stress is associated with the progression of Alzheimer's disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.


Subject(s)
Alzheimer Disease/pathology , Biomarkers/metabolism , Lipid Peroxidation , Oxidative Stress , Brain/pathology , Heme Oxygenase-1/metabolism , Humans , Reactive Oxygen Species/metabolism , Transcriptome , Up-Regulation
18.
Front Endocrinol (Lausanne) ; 12: 703170, 2021.
Article in English | MEDLINE | ID: mdl-34322094

ABSTRACT

3,5-diiodo-thyronine (T2), an endogenous metabolite of thyroid hormones, exerts beneficial metabolic effects. When administered to overweight rats receiving a high fat diet (HFD), it significantly reduces body fat accumulation, which is a risk factor for the development of an inflammatory state and of related metabolic diseases. In the present study, we focused our attention on T2 actions aimed at improving the adverse effects of long-lasting HFD such as the adipocyte inflammatory response. For this purpose, three groups of rats were used throughout: i) receiving a standard diet for 14 weeks; ii) receiving a HFD for 14 weeks, and iii) receiving a HFD for 14 weeks with a simultaneous daily injection of T2 for the last 4 weeks. The results showed that T2 administration ameliorated the expression profiles of pro- and anti-inflammatory cytokines, reduced macrophage infiltration in white adipose tissue, influenced their polarization and reduced lymphocytes recruitment. Moreover, T2 improved the expression of hypoxia markers, all altered in HFD rats, and reduced angiogenesis by decreasing the pro-angiogenic miR126 expression. Additionally, T2 reduced the oxidative damage of DNA, known to be associated to the inflammatory status. This study demonstrates that T2 is able to counteract some adverse effects caused by a long-lasting HFD and to produce beneficial effects on inflammation. Irisin and SIRT1 pathway may represent a mechanism underlying the above described effects.


Subject(s)
Diet, High-Fat/adverse effects , Diiodothyronines/pharmacology , Hypoxia/drug therapy , Inflammation/drug therapy , Intra-Abdominal Fat/drug effects , Macrophages/drug effects , Neovascularization, Pathologic/drug therapy , Adipokines/metabolism , Animals , DNA Damage , Hypoxia/metabolism , Hypoxia/pathology , Inflammation/etiology , Inflammation/pathology , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/metabolism , Macrophages/immunology , Male , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Overweight/physiopathology , Oxidative Stress , Rats , Rats, Wistar
19.
Methods Mol Biol ; 2310: 33-45, 2021.
Article in English | MEDLINE | ID: mdl-34095996

ABSTRACT

In recent years, a number of advancements have been made in the study of entire mitochondrial proteomes in both physiological and pathological conditions. Naturally occurring iodothyronines (i.e., T3 and T2) greatly influence mitochondrial oxidative capacity, directly or indirectly affecting the structure and function of the respiratory chain components. Blue native PAGE (BN-PAGE) can be used to isolate enzymatically active oxidative phosphorylation (OXPHOS) complexes in one step, allowing the clinical diagnosis of mitochondrial metabolism by monitoring OXPHOS catalytic and/or structural features. Protocols for isolating mammalian liver mitochondria and subsequent one-dimensional (1D) BN-PAGE will be described in relation to the impact of thyroid hormones on mitochondrial bioenergetics.


Subject(s)
Electron Transport Chain Complex Proteins/metabolism , Energy Metabolism/drug effects , Mitochondria, Liver/drug effects , Native Polyacrylamide Gel Electrophoresis , Thyroid Hormones/pharmacology , Cell Fractionation , Mitochondria, Liver/enzymology , Oxidative Phosphorylation/drug effects
20.
Front Endocrinol (Lausanne) ; 12: 631176, 2021.
Article in English | MEDLINE | ID: mdl-33746903

ABSTRACT

Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.


Subject(s)
Iodide Peroxidase/metabolism , Proteomics/methods , Thermogenesis/drug effects , Thermogenesis/physiology , Adipose Tissue , Adipose Tissue, White , Animals , Body Composition , Caloric Restriction , Energy Metabolism/physiology , Glucose/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Kinetics , Liver/metabolism , Male , Mass Spectrometry , Muscle Contraction , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley , Thyroid Gland/metabolism , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...