Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Brain Behav Immun ; 119: 978-988, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761819

ABSTRACT

BACKGROUND: Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS: We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS: MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS: Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.

2.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605062

ABSTRACT

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Beta Rhythm/physiology , Movement/physiology
3.
Brain Stimul ; 17(1): 83-88, 2024.
Article in English | MEDLINE | ID: mdl-38184192

ABSTRACT

BACKGROUND AND OBJECTIVE: No study on neurostimulation in narcolepsy is available until now. Arousal- and wake-promoting effects of vagus nerve stimulation (VNS) have been demonstrated in animal experiments and are well-known as side effects of VNS therapy in epilepsy and depression. The objective was to evaluate the therapeutic effect of VNS on daily sleepiness and cataplexies in narcolepsy. METHODS: In our open-label prospective comparative study, we included narcolepsy patients who were treated with VNS because of depression or epilepsy and compared them to controls without narcolepsy treated with VNS for depression or epilepsy (18 patients in each group, aged 31.5 ± 8.2 years). We evaluated daily sleepiness (Epworth Sleepiness Scale, ESS) and the number of cataplexies per week before the implantation of VNS and at three and six month follow-ups. RESULTS: Compared to baseline (ESS: 15.9 ± 2.5) patients with narcolepsy showed a significant improvement on ESS after three months (11.2 ± 3.3, p < 0.05) and six months (9.6 ± 2.8, p < 0.001) and a trend to reduction of cataplexies. No significant ESS-improvement was observed in patients without narcolepsy (14.9 ± 3.9, 13.6 ± 3.7, 13.2 ± 3.5, p = 0.2 at baseline, three and six months, correspondingly). Side effects did not differ between the study groups. CONCLUSION: In this first evaluation of VNS in narcolepsy, we found a significant improvement of daily sleepiness due to this type of neurostimulation. VNS could be a promising non-medical treatment in narcolepsy.


Subject(s)
Cataplexy , Epilepsy , Narcolepsy , Vagus Nerve Stimulation , Humans , Cataplexy/therapy , Epilepsy/therapy , Narcolepsy/therapy , Prospective Studies , Sleepiness , Treatment Outcome , Vagus Nerve/physiology , Adult
4.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Article in English | MEDLINE | ID: mdl-38086346

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Quality of Life , Brain , Mental Disorders/therapy , Parkinson Disease/therapy
7.
Biomed Pharmacother ; 166: 115435, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666180

ABSTRACT

Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aß40 and Aß42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aß40 and Aß42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.


Subject(s)
Alzheimer Disease , Interleukins , Osteolysis , Animals , Female , Mice , Alzheimer Disease/metabolism , Animals, Genetically Modified , Neuroinflammatory Diseases , Osteolysis/metabolism , Skull
8.
Biomedicines ; 11(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37509536

ABSTRACT

BACKGROUND: Existing evidence suggests a close link among high levels of serum urate (SU), obesity and carotid atherosclerosis. The aim of the present study was to evaluate the interrelations between SU levels and carotid atherosclerosis in subjects with different obesity phenotypes. METHODS: In this study, a total of 2076 subjects (mean age 48.1 ± 13.1 years; 1307 women) were recruited: 59 with general obesity, 616 with central obesity, 715 with mixed (general-central) obesity and 686 non-obese. Anthropometric measurements, vascular risk factors, blood biochemistry analysis (including SU levels), and carotid ultrasound were performed. Ultrasound assessment included evaluation of intima-media thickness (IMT) and plaque characteristics, including number, total area and type (vulnerable vs. stable) of plaques. RESULTS: After adjustment for potential confounders, the highest levels of SU were observed in subjects with mixed obesity, followed by subjects with central obesity, general obesity and the non-obese (309.4 ± 82.2 vs. 301.2 ± 73.1 vs. 272.9 ± 61.8 vs. 234.2 ± 59.8 µmol/L, respectively; F = 149.2, post hoc p < 0.001). Similarly, subjects with mixed and central obesity presented higher values of IMT compared to subjects with general obesity and the non-obese (0.68 ± 0.16 vs. 0.67 ± 0.16 vs. 0.62 ± 0.14 vs. 0.57 ± 0.13 mm, respectively; F = 54.2, post hoc p < 0.001). No difference in number, total area and type of plaques among obesity groups were attested (all p > 0.05). Significantly higher IMT values were observed in subjects with increased SU levels compared to subjects with normal SU levels (0.70 ± 0.10 vs. 0.62 ± 0.14 mm, p = 0.02) only within the central obesity group. Increasing levels of SU were associated with a higher frequency of increased IMT only in subjects with central obesity (OR 1.033, 95% CI 1.025-1.041). Similarly, SU levels yielded a satisfactory performance in detecting subjects with increased IMT (AUC 0.65, 95% CI 0.50-0.73, subjects with carotid plaques (0.62, 95% CI 0.55-0.68) and subjects with vulnerable plaque types (0.68, 0.59-0.76) only within the central obesity group. CONCLUSIONS: Among the studied obesity types, the association between SU levels and markers of carotid atherosclerosis was of particular significance in subjects with central obesity.

9.
J Neurol ; 270(10): 4978-4984, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37368131

ABSTRACT

INTRODUCTION: Vagus nerve stimulation (VNS) is an effective, non-pharmacological therapy for epileptic seizures. Until now, favorable combinations of different groups of antiseizure medication (ASM) and VNS have not been sufficiently addressed. The aim of this study was to identify the synergistic effects between VNS and different ASMs. METHODS: We performed an observational study of patients with epilepsy who were implanted with VNS and had a stable ASM therapy during the first 2 years after the VNS implantation. Data were collected from the Mainz Epilepsy Registry. The efficacy of VNS depending on the concomitantly used ASM group/individual ASMs was assessed by quantifying the responder rate (≥ 50% seizure reduction compared to the time of VNS implantation) and seizure freedom (absence of seizures during the last 6 months of the observation period). RESULTS: One hundred fifty one patients (mean age 45.2 ± 17.0 years, 78 females) were included in the study. Regardless of the used ASM, the responder rate in the whole cohort was 50.3% and the seizure freedom was 13.9%. Multiple regression analysis showed that combination of VNS with synaptic vesicle glycoprotein (SV2A) modulators (responder rate 64.0%, seizure freedom 19.8%) or slow sodium channel inhibitors (responder rate 61.8%, seizure freedom 19.7%) was associated with a statistically significant better responder rate and seizure freedom than combinations of VNS and ASM with other mechanism of action. Within these ASM groups, brivaracetam showed a more favorable effect than levetiracetam, whereas lacosamide and eslicarbazepine were comparable in their effects. CONCLUSION: Our data suggest that the combination of VNS with ASMs belonging to either SV2A modulators or slow sodium channel inhibitors could be optimal to achieve a better seizure control following VNS. However, these preliminary data require further validation under controlled conditions.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Vagus Nerve Stimulation , Female , Humans , Adult , Middle Aged , Treatment Outcome , Epilepsy/drug therapy , Seizures/drug therapy , Registries , Drug Resistant Epilepsy/therapy , Retrospective Studies
10.
J Cardiovasc Dev Dis ; 10(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36826531

ABSTRACT

We aimed to investigate, for the first time, the spectrum of stroke risk factors specific to the population of the Republic of Moldova. The subjects were examined according to a pre-established protocol of risk factor estimation. The study involved 300 subjects, including 60% women and 40% men, with a mean age of 49.9 ± 14.5 years. The most common risk factor was abdominal obesity, identified in 75% of subjects; general obesity was detected in 48%, while 32% of subjects were overweight and 20% were normally weighted. Hypertension was observed in 44%; 8% of those examined had atrial fibrillation, and 9% had diabetes mellitus. Left myocardial hypertrophy on ECG was present in 53% of subjects, and acute ischemic changes in 2%. Laboratory observations detected that glycosylated hemoglobin increased by 7%, and >50% had dyslipidemia. Total cholesterol was significantly elevated by 58%, LDL-cholesterol was increased by 32%, and HDL-cholesterol was decreased by 9%. Homocysteine was increased in 55% and high-sensitivity C-reactive protein in 28% of subjects. These results indicate the presence of modifiable risk factors and the necessity to elaborate on the primary prevention strategies aimed at minimizing the burden of stroke in the population of the Republic of Moldova.

11.
Neurobiol Dis ; 179: 106055, 2023 04.
Article in English | MEDLINE | ID: mdl-36849015

ABSTRACT

Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.


Subject(s)
Myoclonic Epilepsy, Juvenile , Female , Humans , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/drug therapy , Brain/diagnostic imaging , Electroencephalography/methods , Seizures , Basal Ganglia
14.
Eur J Neurol ; 29(8): 2309-2320, 2022 08.
Article in English | MEDLINE | ID: mdl-35582936

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in multiple sclerosis (MS) patients with concomitant epilepsy. METHODS: From 3-T magnetic resonance imaging scans of 30 MS patients with epilepsy (MSE group; age 41 ± 15 years, 21 females, disease duration 8 ± 6 years, median Expanded Disability Status Scale [EDSS] score 3), 60 MS patients without epilepsy (MS group; age 41 ± 12 years, 35 females, disease duration 6 ± 4 years, EDSS score 2), and 60 healthy subjects (HS group; age 40 ± 13 years, 27 females) the regional volumes of GM lesions and of cortical, subcortical and hippocampal structures were quantified. Network topology and vulnerability were modelled within the graph theoretical framework. Receiver-operating characteristic (ROC) curve analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. RESULTS: Higher lesion volumes within the hippocampus, mesiotemporal cortex and amygdala were detected in the MSE compared to the MS group (all p < 0.05). The MSE group had lower cortical volumes mainly in temporal and parietal areas compared to the MS and HS groups (all p < 0.05). Lower hippocampal tail and presubiculum volumes were identified in both the MSE and MS groups compared to the HS group (all p < 0.05). Network topology in the MSE group was characterized by higher transitivity and assortativity, and higher vulnerability compared to the MS and HS groups (all p < 0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67-0.91]) in discriminating between MSE and MS patients. CONCLUSIONS: High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity for epilepsy occurrence in people with MS.


Subject(s)
Epilepsy , Multiple Sclerosis , Adult , Brain/diagnostic imaging , Brain/pathology , Epilepsy/pathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
15.
Cereb Cortex ; 32(12): 2621-2634, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34689188

ABSTRACT

Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in ß- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA. We found a strong functional ß-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in mice. We observed that in both humans and mice the direction of information flow mediated by ß- and γ-band oscillations was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and physiological PMC-M1 functioning or pathological transformations within this network.


Subject(s)
Motor Cortex , Animals , Electroencephalography , Forelimb , Mice , Motor Cortex/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
17.
Adv Exp Med Biol ; 1376: 1-27, 2022.
Article in English | MEDLINE | ID: mdl-34735712

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.


Subject(s)
COVID-19 , Nervous System Diseases , Central Nervous System , Humans , Pandemics , SARS-CoV-2 , Virulence
18.
Ann Neurol ; 91(2): 192-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34967456

ABSTRACT

OBJECTIVE: Fatigue is a frequent and severe symptom in multiple sclerosis (MS), but its pathophysiological origin remains incompletely understood. We aimed to examine the predictive value of subcortical gray matter volumes for fatigue severity at disease onset and after 4 years by applying structural equation modeling (SEM). METHODS: This multicenter cohort study included 601 treatment-naive patients with MS after the first demyelinating event. All patients underwent a standardized 3T magnetic resonance imaging (MRI) protocol. A subgroup of 230 patients with available clinical follow-up data after 4 years was also analyzed. Associations of subcortical volumes (included into SEM) with MS-related fatigue were studied regarding their predictive value. In addition, subcortical regions that have a central role in the brain network (hubs) were determined through structural covariance network (SCN) analysis. RESULTS: Predictive causal modeling identified volumes of the caudate (s [standardized path coefficient] = 0.763, p = 0.003 [left]; s = 0.755, p = 0.006 [right]), putamen (s = 0.614, p = 0.002 [left]; s = 0.606, p = 0.003 [right]) and pallidum (s = 0.606, p = 0.012 [left]; s = 0.606, p = 0.012 [right]) as prognostic factors for fatigue severity in the cross-sectional cohort. Moreover, the volume of the pons was additionally predictive for fatigue severity in the longitudinal cohort (s = 0.605, p = 0.013). In the SCN analysis, network hubs in patients with fatigue worsening were detected in the putamen (p = 0.008 [left]; p = 0.007 [right]) and pons (p = 0.0001). INTERPRETATION: We unveiled predictive associations of specific subcortical gray matter volumes with fatigue in an early and initially untreated MS cohort. The colocalization of these subcortical structures with network hubs suggests an early role of these brain regions in terms of fatigue evolution. ANN NEUROL 2022;91:192-202.


Subject(s)
Brain/diagnostic imaging , Fatigue/diagnostic imaging , Multiple Sclerosis/diagnostic imaging , Adult , Cohort Studies , Cross-Sectional Studies , Demyelinating Diseases/diagnostic imaging , Fatigue/etiology , Fatigue/physiopathology , Female , Follow-Up Studies , Gray Matter/diagnostic imaging , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Pons/diagnostic imaging , Predictive Value of Tests , Prognosis , Putamen/diagnostic imaging , Young Adult
19.
Biomedicines ; 9(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34829958

ABSTRACT

Systemic inflammation and the host immune responses associated with certain viral infections may accelerate the rate of neurodegeneration in patients with Creutzfeldt-Jakob disease (CJD), a rare, transmissible neurodegenerative disease. However, the effects of the newly emerged SARS-CoV-2 infection on the pathogenesis of CJD are unknown. In this study, we describe the case of an elderly female patient with sporadic CJD that exhibited clinical deterioration with the emergence of seizures and radiological neurodegenerative progression following an infection with SARS-CoV-2 and severe COVID-19. Despite efforts to control the progression of the disease, a dismal outcome ensued. This report further evidences the age-dependent neurological effects of SARS-CoV-2 infection and proposes a vulnerability to CJD and increased CJD progression following COVID-19.

20.
Front Immunol ; 12: 748357, 2021.
Article in English | MEDLINE | ID: mdl-34712236

ABSTRACT

Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Making Test part A and B (TMT-A and TMT-B) and the Symbol Digit Modalities Test (SDMT). Patients were evaluated clinically including assessments with the Expanded Disability Status Scale. A hierarchical regression model revealed that lower neurite density index (NDI) in primary motor cortex, suggestive for axonal loss in the grey matter, predicted higher motor thresholds, i.e. reduced excitability in MS patients (p = .009, adjusted r² = 0.117). Furthermore, lower NDI was indicative of decreased cognitive-motor performance (p = .007, adjusted r² = .142 for TMT-A; p = .009, adjusted r² = .129 for TMT-B; p = .006, adjusted r² = .142 for SDMT). Motor WM tracts of patients were characterized by overlapping clusters of lowered NDI (p <.05, Cohen's d = 0.367) and DTI-based fractional anisotropy (FA) (p <.05, Cohen's d = 0.300), with NDI exclusively detecting a higher amount of abnormally appearing voxels. Further, orientation dispersion index of motor tracts was increased in patients compared to controls, suggesting a decreased fiber coherence (p <.05, Cohen's d = 0.232). This study establishes a link between microstructural characteristics and excitability of neural tissue, as well as cognitive-motor performance in multiple sclerosis. We further demonstrate that the NODDI parameters neurite density index and orientation dispersion index detect a larger amount of abnormally appearing voxels in patients compared to healthy controls, as opposed to the classical DTI parameter FA. Our work outlines the potential for microstructure imaging using advanced biophysical models to forecast excitability alterations in neuroinflammation.


Subject(s)
Motor Cortex/physiopathology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Adult , Diffusion Tensor Imaging , Disability Evaluation , Electromyography , Evoked Potentials, Motor , Female , Gray Matter/diagnostic imaging , Gray Matter/ultrastructure , Humans , Male , Middle Aged , Models, Neurological , Motor Cortex/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Neurites/ultrastructure , Neuroimaging , Neuropsychological Tests , Psychomotor Performance , Transcranial Magnetic Stimulation , White Matter/diagnostic imaging , White Matter/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...