Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 44: 182-190, 2017 11.
Article in English | MEDLINE | ID: mdl-29037779

ABSTRACT

Thermophilic organisms are being increasingly investigated and applied in metabolic engineering and biotechnology. The distinct metabolic and physiological characteristics of thermophiles, including broad substrate range and high uptake rates, coupled with recent advances in genetic tool development, present unique opportunities for strain engineering. However, poor understanding of the cellular physiology and metabolism of thermophiles has limited the application of systems biology and metabolic engineering tools to these organisms. To address this concern, we applied high resolution 13C metabolic flux analysis to quantify fluxes for three divergent extremely thermophilic bacteria from separate phyla: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. We performed 18 parallel labeling experiments, using all singly labeled glucose tracers for each strain, reconstructed and validated metabolic network models, measured biomass composition, and quantified precise metabolic fluxes for each organism. In the process, we resolved many uncertainties regarding gaps in pathway reconstructions and elucidated how these organisms maintain redox balance and generate energy. Overall, we found that the metabolisms of the three thermophiles were highly distinct, suggesting that adaptation to growth at high temperatures did not favor any particular set of metabolic pathways. All three strains relied heavily on glycolysis and TCA cycle to generate key cellular precursors and cofactors. None of the investigated organisms utilized the Entner-Doudoroff pathway and only one strain had an active oxidative pentose phosphate pathway. Taken together, the results from this study provide a solid foundation for future model building and engineering efforts with these and related thermophiles.


Subject(s)
Carbon Isotopes/metabolism , Geobacillus/metabolism , Hot Temperature , Metabolome , Models, Biological , Rhodothermus/metabolism , Thermus thermophilus/metabolism
2.
Metab Eng ; 44: 191-197, 2017 11.
Article in English | MEDLINE | ID: mdl-29042298

ABSTRACT

Vibrio natriegens is a fast-growing, non-pathogenic bacterium that is being considered as the next-generation workhorse for the biotechnology industry. However, little is known about the metabolism of this organism which is limiting our ability to apply rational metabolic engineering strategies. To address this critical gap in current knowledge, here we have performed a comprehensive analysis of V. natriegens metabolism. We constructed a detailed model of V. natriegens core metabolism, measured the biomass composition, and performed high-resolution 13C metabolic flux analysis (13C-MFA) to estimate intracellular fluxes using parallel labeling experiments with the optimal tracers [1,2-13C]glucose and [1,6-13C]glucose. During exponential growth in glucose minimal medium, V. natriegens had a growth rate of 1.70 1/h (doubling time of 24min) and a glucose uptake rate of 3.90g/g/h, which is more than two 2-fold faster than E. coli, although slower than the fast-growing thermophile Geobacillus LC300. 13C-MFA revealed that the core metabolism of V. natriegens is similar to that of E. coli, with the main difference being a 33% lower normalized flux through the oxidative pentose phosphate pathway. Quantitative analysis of co-factor balances provided additional insights into the energy and redox metabolism of V. natriegens. Taken together, the results presented in this study provide valuable new information about the physiology of V. natriegens and establish a solid foundation for future metabolic engineering efforts with this promising microorganism.


Subject(s)
Carbon Isotopes/metabolism , Metabolome , Models, Biological , Vibrio/growth & development , Vibrio/genetics
3.
Metab Eng ; 37: 63-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27164561

ABSTRACT

We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Genome, Bacterial/genetics , Glucose/metabolism , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways/physiology , Thermus thermophilus/metabolism , Xylose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosome Mapping/methods , Computer Simulation , Directed Molecular Evolution/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial/physiology , Metabolic Clearance Rate , Models, Biological , Species Specificity , Thermus thermophilus/classification , Thermus thermophilus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...