Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1394685, 2024.
Article in English | MEDLINE | ID: mdl-38818373

ABSTRACT

Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis.

2.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187734

ABSTRACT

Breast-cancer brain metastasis (BCBM) poses a significant clinical challenge, resulting in an end-stage diagnosis and hindered by limited therapeutic options. The blood-brain barrier (BBB) acts as an anatomical and physiological hurdle for therapeutic compounds, restricting the effective delivery of therapies to the brain. In order to grow and survive in a nutrient-poor environment, tumors in the brain must adapt to their metabolic needs, becoming highly dependent on acetate. These tumors rely on the conversion of acetate to acetyl-CoA by the enzyme Acetyl-CoA synthetase 2 (ACSS2), a key metabolic enzyme involved in regulating fatty acid synthesis and protein acetylation in tumor cells. ACSS2 has emerged as a crucial enzyme required for the growth of tumors in the brain. Here, we utilized a computational pipeline, combining pharmacophore-based shape screen methodology with ADME property predictions to identify novel brain-permeable ACSS2 inhibitors. From a small molecule library, this approach identified 30 potential ACSS2 binders, from which two candidates, AD-5584 and AD-8007, were validated for their binding affinity, predicted metabolic stability, and, notably, their ability to traverse the BBB. We show that treatment of BCBM cells, MDA-MB-231BR, with AD-5584 and AD-8007 leads to a significant reduction in lipid storage, reduction in colony formation, and increase in cell death in vitro . Utilizing an ex vivo orthotopic brain-slice tumor model, we show that treatment with AD-8007 and AD-5584 significantly reduces tumor size and synergizes with radiation in blocking BCBM tumor growth ex vivo. Importantly, we show that following intraperitoneal injections with AD-5584 and AD-8007, we can detect these compounds in the brain, confirming their BBB permeability. Thus, we have identified and validated novel ACSS2 inhibitor candidates for further drug development and optimization as agents for treating patients with breast cancer brain metastasis.

3.
Oncogene ; 41(14): 2122-2136, 2022 04.
Article in English | MEDLINE | ID: mdl-35190642

ABSTRACT

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.


Subject(s)
Glioblastoma , Acetate-CoA Ligase/metabolism , Acetates/metabolism , Acetates/pharmacology , Cell Line, Tumor , Humans , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation
4.
Cell Signal ; 90: 110201, 2022 02.
Article in English | MEDLINE | ID: mdl-34800629

ABSTRACT

O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.


Subject(s)
Acetylglucosamine , Neoplasms , Acetylglucosamine/metabolism , Humans , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation , Protein Processing, Post-Translational
5.
J Vis Exp ; (175)2021 09 22.
Article in English | MEDLINE | ID: mdl-34633392

ABSTRACT

Brain metastasis is a serious consequence of breast cancer for women as these tumors are difficult to treat and are associated with poor clinical outcomes. Preclinical mouse models of breast cancer brain metastatic (BCBM) growth are useful but are expensive, and it is difficult to track live cells and tumor cell invasion within the brain parenchyma. Presented here is a protocol for ex vivo brain slice cultures from xenografted mice containing intracranially injected breast cancer brain-seeking clonal sublines. MDA-MB-231BR luciferase tagged cells were injected intracranially into the brains of Nu/Nu female mice, and following tumor formation, the brains were isolated, sliced, and cultured ex vivo. The tumor slices were imaged to identify tumor cells expressing luciferase and monitor their proliferation and invasion in the brain parenchyma for up to 10 days. Further, the protocol describes the use of time-lapse microscopy to image the growth and invasive behavior of the tumor cells following treatment with ionizing radiation or chemotherapy. The response of tumor cells to treatments can be visualized by live-imaging microscopy, measuring bioluminescence intensity, and performing histology on the brain slice containing BCBM cells. Thus, this ex vivo slice model may be a useful platform for rapid testing of novel therapeutic agents alone or in combination with radiation to identify drugs personalized to target an individual patient's breast cancer brain metastatic growth within the brain microenvironment.


Subject(s)
Brain Neoplasms , Nervous System Physiological Phenomena , Animals , Brain , Female , Luciferases , Mice , Mice, Nude , Tumor Microenvironment
6.
Mol Cancer Res ; 18(4): 585-598, 2020 04.
Article in English | MEDLINE | ID: mdl-31974291

ABSTRACT

Breast tumors are heterogeneous and composed of different subpopulation of cells, each with dynamic roles that can change with stage, site, and microenvironment. Cellular heterogeneity is, in part, due to cancer stem-like cells (CSC) that share properties with stem cells and are associated with treatment resistance. CSCs rewire metabolism to meet energy demands of increased growth and biosynthesis. O-GlcNAc transferase enzyme (OGT) uses UDP-GlcNAc as a substrate for adding O-GlcNAc moieties to nuclear and cytoplasmic proteins. OGT/O-GlcNAc levels are elevated in multiple cancers and reducing OGT in cancer cells blocks tumor growth. Here, we report that breast CSCs enriched in mammosphere cultures contain elevated OGT/O-GlcNAcylation. Inhibition of OGT genetically or pharmacologically reduced mammosphere forming efficiency, the CD44H/CD24L, NANOG+, and ALDH+ CSC population in breast cancer cells. Conversely, breast cancer cells overexpressing OGT increased mammosphere formation, CSC populations in vitro, and also increased tumor initiation and CSC frequency in vivo. Furthermore, OGT regulates expression of a number of epithelial-to-mesenchymal transition and CSC markers including CD44, NANOG, and c-Myc. In addition, we identify Krüppel-like factor 8 (KLF8) as a novel regulator of breast cancer mammosphere formation and a critical target of OGT in regulating CSCs. IMPLICATIONS: These findings demonstrate that OGT plays a key role in the regulation of breast CSCs in vitro and tumor initiation in vivo, in part, via regulation of KLF8, and thus inhibition of OGT may serve as a therapeutic strategy to regulate tumor-initiating activity.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/pathology , N-Acetylglucosaminyltransferases/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , N-Acetylglucosaminyltransferases/genetics , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology
7.
BMC Biol ; 17(1): 52, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31272438

ABSTRACT

Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.


Subject(s)
Hexosamines/metabolism , Neoplasms/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Biosynthetic Pathways
8.
J Ultrasound Med ; 38(12): 3221-3228, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31124171

ABSTRACT

OBJECTIVES: Hypoxic cancer cells have been shown to be more resistant to radiation therapy than normoxic cells. Hence, this study investigated whether ultrasound (US)-induced rupture of oxygen-carrying microbubbles (MBs) would enhance the response of breast cancer metastases to radiation. METHODS: Nude mice (n = 15) received stereotactic injections of brain-seeking MDA-MB-231 breast cancer cells into the right hemisphere. Animals were randomly assigned into 1 of 5 treatment groups: no intervention, 10 Gy radiation using a small-animal radiation research platform, nitrogen-carrying MBs combined with US-mediated MB rupture immediately before 10 Gy radiation, oxygen-carrying MBs immediately before 10 Gy radiation, and oxygen-carrying MBs with US-mediated MB rupture immediately before 10 Gy radiation. Tumor progression was monitored with 3-dimensional US, and overall survival was noted. RESULTS: All groups except those treated with oxygen-carrying MB rupture and radiation had continued rapid tumor growth after treatment. Tumors treated with radiation alone showed a mean increase in volume ± SD of 337% ± 214% during the week after treatment. Tumors treated with oxygen-carrying MBs and radiation without MB rupture showed an increase in volume of 383% ± 226%. Tumors treated with radiation immediately after rupture of oxygen-carrying MBs showed an increase in volume of only 41% ± 1% (P = 0.045), and this group also showed a 1 week increase in survival time. CONCLUSIONS: Adding US-ruptured oxygen-carrying MBs to radiation therapy appears to delay tumor progression and improve survival in a murine model of metastatic breast cancer.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Drug Carriers , Microbubbles , Oxygen/administration & dosage , Animals , Disease Models, Animal , Female , Mice , Mice, Nude , Random Allocation , Ultrasonography
9.
Genetics ; 198(2): 617-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25104516

ABSTRACT

Control of the eukaryotic G2/M transition by CDC2/CYCLINB is tightly regulated by protein-protein interactions, protein phosphorylations, and nuclear localization of CDC2/CYCLINB. We previously reported a screen, in Aspergillus nidulans, for extragenic suppressors of nimX2(cdc2) that resulted in the identification of the cold-sensitive snxA1 mutation. We demonstrate here that snxA1 suppresses defects in regulators of the CDK1 mitotic induction pathway, including nimX2(cdc) (2), nimE6(cyclinB), and nimT23(cdc) (25), but does not suppress G2-arresting nimA1/nimA5 mutations, the S-arresting nimE10(cyclinB) mutation, or three other G1/S phase mutations. snxA encodes the A. nidulans homolog of Saccharomyces cerevisiae Hrb1/Gbp2; nonessential shuttling messenger RNA (mRNA)-binding proteins belonging to the serine-arginine-rich (SR) and RNA recognition motif (RRM) protein family; and human heterogeneous ribonucleoprotein-M, a spliceosomal component involved in pre-mRNA processing and alternative splicing. snxA(Hrb) (1) is nonessential, its deletion phenocopies the snxA1 mutation, and its overexpression rescues snxA1 and ΔsnxA mutant phenotypes. snxA1 and a second allele isolated in this study, snxA2, are hypomorphic mutations that result from decreased transcript and protein levels, suggesting that snxA acts normally to restrain cell cycle progression. SNXA(HRB1) is predominantly nuclear, but is not retained in the nucleus during the partially closed mitosis of A. nidulans. We show that the snxA1 mutation does not suppress nimX2 by altering NIMX2(CDC2)/NIME(CYCLINB) kinase activity and that snxA1 or ΔsnxA alter localization patterns of NIME(CYCLINB) at the restrictive temperatures for snxA1 and nimX2. Together, these findings suggest a novel and previously unreported role of an SR/RRM family protein in cell cycle regulation, specifically in control of the CDK1 mitotic induction pathway.


Subject(s)
Aspergillus nidulans/cytology , Fungal Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Aspergillus nidulans/metabolism , CDC2 Protein Kinase/metabolism , Cell Nucleus/metabolism , Cyclin B/metabolism , Fungal Proteins/genetics , G2 Phase , Gene Expression , Interphase , Mutation , Nucleocytoplasmic Transport Proteins/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...