Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Toxicol Rep ; 12: 234-243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38356855

ABSTRACT

Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells. Briefly, assays performed included metabolic activity, cholesterol content, mitochondrial respiration, and prominent markers of oxidative stress, as well as determining changes in mitochondrial potential, mitochondrial production of reactive oxygen species, and intracellular antioxidant levels like glutathione, glutathione peroxidase and superoxide dismutase. Cellular damage was probed using fluorescent stains, annexin V and propidium iodide. Our results indicated that prolonged exposure (24-hours) to palmitic acid doses ≥ 0.5 mM significantly impaired mitochondrial oxidative status, leading to enhanced mitochondrial membrane potential and increased mitochondrial ROS production. While palmitic acid dose of 1 mM appeared to induce prominent cardiomyoblasts damage, likely because of its capacity to increase cholesterol content/ lipid peroxidation and severely suppressing intracellular antioxidants. Interestingly, short-term (4-hours) exposure to palmitic acid, especially for lower doses (≤ 0.25 mM), could improve metabolic activity, mitochondrial function and protect against oxidative stress induced myocardial damage. Potentially suggesting that, depending on the dose consumed or duration of exposure, consumption of saturated fatty acids such as palmitic acid can differently affect the myocardium. However, these results are still preliminary, and in vivo research is required to understand the significance of maintaining intracellular antioxidants to protect against oxidative stress induced by lipid overload.

2.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398599

ABSTRACT

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Subject(s)
Cytoskeletal Proteins , NAD , Humans , Chromatography, High Pressure Liquid , Armadillo Domain Proteins
3.
Pflugers Arch ; 476(3): 283-293, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044359

ABSTRACT

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.


Subject(s)
Insulin Resistance , Mitochondrial Diseases , Animals , Diet, High-Fat , Muscle, Skeletal/metabolism , Models, Animal , Mitochondrial Diseases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
4.
Molecules ; 28(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764216

ABSTRACT

Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.


Subject(s)
Cardiovascular Diseases , Coffee , Humans , Cardiovascular Diseases/prevention & control , Oxidative Stress , Antioxidants , Biomarkers , Inflammation
5.
Molecules ; 28(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764345

ABSTRACT

The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37107339

ABSTRACT

Coenzyme Q10 (CoQ10) bioavailability in vivo is limited due to its lipophilic nature. Moreover, a large body of evidence in the literature shows that muscle CoQ10 uptake is limited. In order to address cell specific differences in CoQ uptake, we compared cellular CoQ10 content in cultured human dermal fibroblasts and murine skeletal muscle cells that were incubated with lipoproteins from healthy volunteers and enriched with different formulations of CoQ10 following oral supplementation. Using a crossover design, eight volunteers were randomized to supplement 100 mg/daily CoQ10 for two weeks, delivered both in phytosome form (UBQ) as a lecithin formulation and in CoQ10 crystalline form. After supplementation, plasma was collected for CoQ10 determination. In the same samples, low density lipoproteins (LDL) were extracted and normalized for CoQ10 content, and 0.5 µg/mL in the medium were incubated with the two cell lines for 24 h. The results show that while both formulations were substantially equivalent in terms of plasma bioavailability in vivo, UBQ-enriched lipoproteins showed a higher bioavailability compared with crystalline CoQ10-enriched ones both in human dermal fibroblasts (+103%) and in murine skeletal myoblasts (+48%). Our data suggest that phytosome carriers might provide a specific advantage in delivering CoQ10 to skin and muscle tissues.

7.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290794

ABSTRACT

Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress. This consequence mainly drives poor glycemic control and metabolic complications that are implicated in the development of cardiovascular disease. The current review explores the pathological relevance of elevated lipid peroxidation products in T2D, especially highlighting their potential role as biomarkers and therapeutic targets in disease severity. In addition, we briefly explain the implication of some prominent antioxidant enzymes/factors involved in the blockade of lipid peroxidation, including termination reactions that involve the effect of antioxidants, such as catalase, coenzyme Q10, glutathione peroxidase, and superoxide dismutase, as well as vitamins C and E.

8.
Biomed Pharmacother ; 153: 113439, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076554

ABSTRACT

Diabetic neuropathy is a risk factor for developing complications such as autonomic cardiovascular disease, osteoarthropathy, foot ulcers, and infections, which may be the direct cause of death. Even worse, patients plagued by this condition display painful neuropathic symptoms that are usually severe and frequently lead to depression, anxiety, and sleep disarrays, eventually leading to a poor quality of life. There is a general interest in evaluating the therapeutic properties of topical capsaicin cream as an effective agent for pain relief in these patients. As such, the current review makes use of major search engines like PubMed and Google Scholar, to bring an updated analysis of clinical studies reporting on the therapeutic effects of capsaicin in patients with painful diabetic neuropathy. In fact, most of the summarized literature indicates that topical capsaicin (0.075 %) cream, when applied to the painful areas for approximately 8 weeks, can reduce pain, which may lead to clinical improvements in walking, working, and sleeping in patients with painful diabetic neuropathy. The current review also discusses essential information on capsaicin, including its source, bioavailability profile, as well as treatment doses and duration, to highlight its therapeutic potential.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Administration, Topical , Capsaicin/adverse effects , Diabetes Mellitus/drug therapy , Humans , Pain/drug therapy , Quality of Life
9.
Biofactors ; 48(5): 1129-1136, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35583412

ABSTRACT

Carboxylative enzymes are involved in many pathways and their regulation plays a crucial role in many of these pathways. In particular, γ-glutamylcarboxylase (GGCX) converts glutamate residues (Glu) into γ-carboxyglutamate (Gla) of the vitamin K-dependent proteins (VKDPs) activating them. VKDPs include at least 17 proteins involved in processes such as blood coagulation, blood vessels calcification, and bone mineralization. VKDPs are activated by the reduced form of vitamin K, naturally occurring as vitamin K1 (phylloquinone) and K2 (menaquinones, MKs). Among these, MK7 is the most efficient in terms of bioavailability and biological effect. Similarly to other trans isomers, it is produced by natural fermentation or chemically in both trans and cis. However, the efficacy of the biological effect of the different isomers and the impact on humans are unknown. Our study assessed carboxylative efficacy of trans and cis MK7 and compared it with other vitamin K isomers, evaluating both the expression of residues of carboxylated Gla-protein by western blot analysis and using a cell-free system to determine the GGCX activity by HPLC. Trans MK7H2 showed a higher ability to carboxylate the 70 KDa GLA-protein, previously inhibited in vitro by warfarin treatment. However, cis MK7 also induced a carboxylation activity albeit of a small extent. The data were confirmed chromatographically, in which a slight carboxylative activity of cis MK7H2 was demonstrated, comparable with both K1H2 and oxidized trans MK7 but less than trans MK7H2 . For the first time, a difference of biological activity between cis and trans configuration of menaquinone-7 has been reported.


Subject(s)
Vitamin K 1 , Vitamin K , 1-Carboxyglutamic Acid , Humans , Vitamin K/pharmacology , Vitamin K 1/metabolism , Vitamin K 1/pharmacology , Vitamin K 2/metabolism , Vitamin K 2/pharmacology , Warfarin/pharmacology
10.
Oxid Med Cell Longev ; 2022: 1744408, 2022.
Article in English | MEDLINE | ID: mdl-35222791

ABSTRACT

Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.


Subject(s)
Longevity/drug effects , Stilbenes/pharmacology , Animals , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Longevity/genetics , Male , Oxidative Stress/drug effects , Proteome/drug effects , Proteome/metabolism , Sex Factors
11.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35204095

ABSTRACT

The levels of bioactive compounds in broccoli and their bioavailability following broccoli intake can be affected by the cooking procedures used for vegetable preparation. In the present pilot study, we compared the human plasma bioavailability of antioxidant compounds (ß-carotene, lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is comparable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment on plasma bioavailability of lipophilic antioxidants (lutein and ß-carotene) and of phylloquinone was comparable. The lutein and ß-carotene plasma levels did not change after administration of steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone plasma levels. Considering the antioxidant action and the potential chemopreventive activity of ITCs, steaming treatments can be considered the most suitable cooking method to promote the health benefits of broccoli in the diet.

12.
Metallomics ; 13(11)2021 11 23.
Article in English | MEDLINE | ID: mdl-34724067

ABSTRACT

New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans , In Vitro Techniques , Molecular Structure
13.
Life Sci ; 286: 120068, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34688697

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of mortality in patients with type 2 diabetes (T2D). The conventional therapies seem to offer minimal long-term cardioprotection against diabetes-related complications in patients living with T2D. There is a growing interest in understanding the therapeutic effects of food-derived bioactive compounds in protecting or managing these metabolic diseases. This includes uncovering the therapeutic potential of fat-soluble micronutrients such as vitamin K, which are abundantly found in green leafy vegetables. We searched the major electronic databases including PubMed, Web of Sciences, Scopus, Google Scholar and Science direct. The search retrieved randomized clinical trials and preclinical studies, reporting on the impact of vitamin K on CVD-related complications in T2D. The current review updates clinical evidence on the therapeutic benefits of vitamin K by attenuating CVD-risk factors such as blood lipid profiles, blood pressure, as well as markers of oxidative stress and inflammation in patients with T2D. Importantly, the summarized preclinical evidence provides a unique perspective into the pathophysiological mechanisms that could be targeted by vitamin K in the primary prevention of T2D-related complications. Lastly, this review further explores the controversies related to the cardioprotective effects of vitamin K, and also provides the basic information such as the source and bioavailability profile of this micronutrient is covered to highlight its therapeutic potential.


Subject(s)
Cardiovascular Diseases/prevention & control , Vitamin K/metabolism , Vitamin K/physiology , Cardiotonic Agents/pharmacology , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Humans , Micronutrients/metabolism , Primary Prevention , Trace Elements , Vitamins
14.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439573

ABSTRACT

The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.

15.
J Trace Elem Med Biol ; 66: 126746, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33756184

ABSTRACT

BACKGROUND: Cadmium is considered the seventh most toxic heavy metal as per ATSDR ranking but its mechanism of toxicity is debated. Recently, we evaluated the effects of this metal on the erythrocyte of teleost fish (Oncorhynchus mykiss) leading us to hypothesize that the pro-oxidant activity of cadmium is not linked to mitochondria but more likely to haemoglobin. In this context, the main aim of this work was to detect the ability of Cd to induce structural perturbation in haemoproteins that present different structures and thus different functional properties and to identify what sites of interaction are mainly involved. METHODS: The effect of Cd on the structural destabilization of the different haemoproteins was followed spectrophometrically through their precipitation. In addition, the sites of interaction between the different haemoproteins and bivalent cadmium ions were identified by MIB server followed by molecular docking/molecular dynamics simulations both in the dimeric and tetrameric associations. RESULTS: Cadmium does not influence the autoxidation rate of Mb, HbA and trout HbI. However, the presence of this metal accelerates the precipitation process in trout HbIV in a dose-dependent manner. Moreover, the presence of 1-10-50-250-500-1000 µM GSH, a chelating agent, reduces the ability of cadmium to accelerate the denaturation process although it is not able to completely prevent it. In order to explain the experimental results, a computational investigations was carried out to identify the cadmium cation affinity for the studied haemoglobins and myoglobin, both in their dimeric and tetrameric forms. As a result, the highest affinity cadmium binding sites for fish HbIV are located at the interface between tetramer-tetramer association, indicating that the cation can assist supramolecular protein aggregations and induce complex precipitation. For mammalian Hb, Mb and fish HbI computational investigation did not detect any site where Cd could to induce such aggregation, in line with the experimental results. CONCLUSION: The present study provides new information on the mechanisms of toxicity of cadmium by specific interaction with trout O. mykiss haemoglobin component.


Subject(s)
Cadmium/chemistry , Fish Proteins/chemistry , Hemoglobins/chemistry , Sulfhydryl Compounds/chemistry , Animals , Cadmium Poisoning , Computer Simulation , Erythrocytes , Humans , Mitochondria/chemistry , Molecular Docking Simulation , Oncorhynchus mykiss , Protein Binding , Protein Conformation , Protein Multimerization , Reactive Oxygen Species/chemistry , Water Pollutants, Chemical
16.
Clin Nutr ESPEN ; 41: 77-87, 2021 02.
Article in English | MEDLINE | ID: mdl-33487310

ABSTRACT

BACKGROUND AND AIMS: There is a general interest in understanding how the consumption of tea impacts cardiovascular function in individuals at risk of developing cardiovascular disease (CVD). The current review focuses on evidence from randomized controlled trials (RCTs) reporting on associations between tea consumption and endothelial function, in the primary and secondary prevention of coronary artery disease (CAD). METHODS: PubMed, EMBASE, and Google Scholar databases/search engines were used to identify eligible studies. Included studies had to report on the impact of tea supplementation of endothelial function or CAD related markers. In addition to flow-mediated dilation (FMD), makers of oxidative stress and inflammation such as oxidized low-density lipoprotein and C-reactive protein were considered as determinants of endothelial function. A total of 34 RCTs met the inclusion criteria, and these reported on the impact of tea consumption on endothelial function in individuals at risk of CVD or patients with CAD. RESULTS: The current qualitative synthesis of literature demonstrates that beyond enhancing nitric oxide bioavailability and lowering blood pressure, regular consumption of tea and its active ingredients such as epigallocatechin gallate may be beneficial in reducing markers of oxidative stress and inflammation. Moreover, the reduction of oxidized low-density lipoprotein and C-reactive protein levels, could be a sign of improved endothelial function in individuals at increased risk of developing CVD. CONCLUSIONS: The cumulative evidence also suggests that the development of epigallocatechin gallate as a nutraceutical or enriching foods with this bioactive compound could be a feasible strategy to improve endothelial function and lower CVD-risk. However, well-designed RCTs are still necessary to confirm long-term benefits of tea consumption on vascular health.


Subject(s)
Coronary Artery Disease , Coronary Artery Disease/prevention & control , Dietary Supplements , Humans , Randomized Controlled Trials as Topic , Secondary Prevention , Tea
17.
Free Radic Biol Med ; 165: 282-288, 2021 03.
Article in English | MEDLINE | ID: mdl-33482334

ABSTRACT

Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 µg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of ß-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment.


Subject(s)
Aging , Ubiquinone , Antioxidants/pharmacology , Fibroblasts , Humans , Ubiquinone/analogs & derivatives
18.
Mitochondrion ; 56: 25-34, 2021 01.
Article in English | MEDLINE | ID: mdl-33220497

ABSTRACT

Platinum-based compounds are the most widely used anticancer drugs but, their elevated toxicity and chemoresistance has stimulated the study of others, such as ruthenium-based compounds. NAMI-A and UNICAM-1 were tested in vitro, comparing the mechanisms of toxicity, in terms of mitochondrial functionality and cellular oxidative stress. UNICAM-1, showed a clear mitochondrial target and a cytotoxic dose-dependent response thanks to its ability to promote an imbalance of cellular redox status. It impaired directly mitochondrial respiratory chain, promoting mitochondrial superoxide anion production, leading to mitochondrial membrane depolarization. All these aspects, could make UNICAM-1 a valid alternative for chemotherapy treatment of breast cancer.


Subject(s)
Cisplatin/pharmacology , Dimethyl Sulfoxide/analogs & derivatives , Mitochondria/drug effects , Organometallic Compounds/pharmacology , Ruthenium Compounds/pharmacology , Superoxides/metabolism , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/chemistry , Dimethyl Sulfoxide/chemistry , Dimethyl Sulfoxide/pharmacology , Female , Humans , Mitochondria/metabolism , Organometallic Compounds/chemistry , Oxidative Stress , Ruthenium Compounds/chemistry , Triple Negative Breast Neoplasms/drug therapy
19.
Pharmacol Res ; 163: 105219, 2021 01.
Article in English | MEDLINE | ID: mdl-33017649

ABSTRACT

Metformin is a widely used glucose-lowering drug, although its impact on adipose tissue function remains elusive. Adipose tissue-derived molecules regulate diverse physiological mechanisms, including energy metabolism, insulin sensitization, and inflammatory response. Alternatively, it has remained relevant to understand the therapeutic regulation of adipokines in efforts to alleviate inflammation in conditions associated with the metabolic syndrome. The current qualitative analysis of available literature focused on randomized clinical trials (RCTs) assessing the association between administration of metformin and adipokine regulation in individuals with metabolic syndrome. The major electronic databases such as MEDLINE, Cochrane Library, Scopus, and EMBASE were searched for eligible RCTs. Overall, 13 RCTs met the inclusion criteria, with a total of 4605 participants. Patients with metabolic syndrome were characterized by a state of obesity, impaired glucose tolerance, insulin resistance, and type 2 diabetes. Cumulative evidence from these RCTs supported the blood glucose lowering effects of metformin, in addition to promoting weight loss, ameliorating insulin resistance, and reducing pro-inflammatory markers such as interleukin-6 and tumor necrosis factor-α in patients with metabolic syndrome. Importantly, these therapeutic effects are associated with the upregulation of adiponectin and suppression of leptin and resistin.


Subject(s)
Adipokines/metabolism , Hypoglycemic Agents/therapeutic use , Metabolic Syndrome/drug therapy , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin Resistance , Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Metformin/pharmacology , Obesity/drug therapy , Obesity/metabolism , Randomized Controlled Trials as Topic
20.
Antioxidants (Basel) ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339155

ABSTRACT

Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1ß, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...