Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Methods Protoc ; 9(1): bpae027, 2024.
Article in English | MEDLINE | ID: mdl-38800072

ABSTRACT

Picrosirius red staining constitutes an important and broadly used tool to visualize collagen and fibrosis in various tissues. Although multiple qualitative and quantitative analysis methods to evaluate fibrosis are available, many require specialized devices and software or lack objectivity and scalability. Here, we aimed to develop a versatile and powerful "QuantSeg" macro in the FIJI image processing software capable of automated, robust, and quick collagen quantification in cardiac tissue from light micrographs. To examine different patterns of fibrosis, an optional segmentation algorithm was implemented. To ensure the method's validity, we quantified the collagen content in a set of wild-type versus plakoglobin-knockout murine hearts exhibiting extensive fibrosis using both the macro and an established, fluorescence microscopy-based method, and compared results. To demonstrate the capabilities of the segmentation feature, rat hearts were examined post-myocardial infarction. We found the QuantSeg macro to robustly detect the differences in fibrosis between knockout and control hearts. In sections with low collagen content, the macro yielded more consistent results than using the fluorescence microscopy-based technique. With its wide range of output parameters, ease of use, cost effectiveness, and objectivity, the QuantSeg macro has the potential to become an established method for analysis of PSR-stained tissue. The novel segmentation feature allows for automated evaluation of different patterns of cardiac fibrosis for the first time.

2.
Mol Metab ; 79: 101859, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142971

ABSTRACT

BACKGROUND: Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS: We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS: Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to ß-adrenergic stimulation. CONCLUSIONS: Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Cerebellar Ataxia , Induced Pluripotent Stem Cells , Maleates , Metabolism, Inborn Errors , Humans , Adenosine Triphosphate/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , HeLa Cells , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Respiration
3.
Circ Res ; 132(2): e43-e58, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656972

ABSTRACT

BACKGROUND: Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS: We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS: Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS: We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.


Subject(s)
Cardiomyopathy, Dilated , Membrane Proteins , Nuclear Proteins , Animals , Humans , Mice , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Fibrosis , Membrane Proteins/genetics , Mutation , Nuclear Envelope/metabolism , Nuclear Proteins/genetics
4.
Stem Cell Res ; 53: 102256, 2021 05.
Article in English | MEDLINE | ID: mdl-33640690

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is characterized by fibro-fatty replacement of the myocardium, heart failure and life-threatening ventricular arrhythmias. Causal mutations were identified in genes encoding for proteins of the desmosomes, predominantly plakophilin-2 (PKP2) and desmoglein-2 (DSG2). We generated gene-edited knock-out iPSC lines for PKP2 (JMUi001-A-2) and DSG2 (JMUi001-A-3) using the CRISPR/Cas9 system in a healthy control iPSC background (JMUi001-A). Stem cell-like morphology, robust expression of pluripotency markers, embryoid body formation and normal karyotypes confirmed the generation of high quality iPSCs to provide a novel isogenic human in vitro model system mimicking ACM when differentiated into cardiomyocytes.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Cardiomyopathies/genetics , Desmoglein 2/genetics , Desmoglein 2/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Myocytes, Cardiac/metabolism , Plakophilins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...