Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226133

ABSTRACT

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.

2.
Chemistry ; : e202402647, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158114

ABSTRACT

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000514

ABSTRACT

The peculiar behavior of arsenoplatin-1, ([Pt(µ-NHC(CH3)O)2ClAs(OH)2], AP-1), in aqueous solution and the progressive appearance of a characteristic and intense blue color led us to carry out a more extensive investigation to determine the nature of this elusive chemical species, which we named "AsPt blue". A multi-technique approach was therefore implemented to describe the processes involved in the formation of AsPt blue, and some characteristic features of this intriguing species were revealed.


Subject(s)
Oxidation-Reduction , Water/chemistry , Solutions , Organoplatinum Compounds/chemistry
4.
Dalton Trans ; 53(23): 9700-9714, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38775704

ABSTRACT

Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.


Subject(s)
DNA , G-Quadruplexes , Silver , DNA/chemistry , Silver/chemistry , Humans , Methane/chemistry , Methane/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cattle , Animals , Serum Albumin, Bovine/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemistry
5.
Pharmaceutics ; 16(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399332

ABSTRACT

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

6.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38270175

ABSTRACT

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , DNA, B-Form , Cisplatin/chemistry , Transcription Factor AP-1/metabolism , Antineoplastic Agents/chemistry , DNA/chemistry
7.
J Inorg Biochem ; 251: 112452, 2024 02.
Article in English | MEDLINE | ID: mdl-38070433

ABSTRACT

Three gold(I) linear compounds, sharing the general formula [AuI(LPh3)], have been synthesized and characterized. The nature of the ligand has been modified by moving down among some of the elements of group 15, i.e. phosphorus, arsenic and antimony. The structures of derived compounds have been solved through XRD and the reactivity behaviour towards selected biomolecules has been investigated through a multi-technique approach involving NMR, high-resolution mass spectrometry and IR. Moreover, the biological activity of the investigated compounds has been comparatively analyzed through classical methodologies and the disclosed differences are discussed in detail.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/chemistry , Antimony/pharmacology , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
Front Chem ; 11: 1253008, 2023.
Article in English | MEDLINE | ID: mdl-37608865

ABSTRACT

An unprecedented palladium/arsenic-based catalytic cycle for the hydration of nitriles to the corresponding amides is here described. It occurs in exceptionally mild conditions such as neutral pH and moderate temperature (60°C). The versatility of this new catalytic cycle was tested on various nitriles from aliphatic to aromatic. Also, the effect of ring substitution with electron withdrawing and electron donating groups was investigated in the cases of aromatic nitriles, as well as the effect of potentially interferent functional groups such as hydroxy group or pyridinic nitrogen. Furthermore, a pilot study on the potential suitability of this approach for its scale-up is presented, revealing that the catalytic cycle could be potentially and quickly scaled up.

9.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37342994

ABSTRACT

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/pharmacology , Auranofin/chemistry , Ligands , Gold/chemistry , Antineoplastic Agents/pharmacology , Magnetic Resonance Spectroscopy
10.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770719

ABSTRACT

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Phosphites , Humans , Female , Auranofin/pharmacology , Auranofin/chemistry , Gold/chemistry , Cell Line, Tumor , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
11.
Dalton Trans ; 52(3): 598-608, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36562298

ABSTRACT

Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.


Subject(s)
Coordination Complexes , Platinum , Platinum/chemistry , Coordination Complexes/chemistry , 2,2'-Dipyridyl , Palladium/chemistry , Gold , Ligands , DNA/chemistry , RNA
12.
Dalton Trans ; 51(35): 13527-13539, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36000524

ABSTRACT

A novel gold(I) complex inspired by the known medicinal inorganic compounds auranofin and thimerosal, namely ethylthiosalicylate(triethylphosphine)gold(I) (AFETT hereafter), was synthesized and characterised and its structure was resolved through X-ray diffraction. The solution behavior of AFETT and its interactions with two biologically relevant proteins (i.e. human serum albumin and haemoglobin) and with a synthetic dodecapeptide reproducing the C-terminal portion of thioredoxin reductase were comparatively analyzed through 31P NMR and ESI-MS. Remarkable binding properties toward these biomolecules were disclosed. Moreover, the cytotoxic effects produced by AFETT on two ovarian cancer cell lines (A2780 and A2780 R) and one colorectal cancer cell line (HCT116) were analyzed and found to be strong and nearly superimposable to those of auranofin. Interestingly, for both compounds, the ability to induce downregulation of vimentin expression in A2780 R cells was evidenced. Despite its close similarity to auranofin, AFETT is reported to exhibit some peculiar and distinctive features such as a lower lipophilicity, an increased water solubility and a faster reactivity towards the selected target biomolecules. These differences might confer to AFETT significant pharmaceutical and therapeutic advantages over auranofin itself.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/chemistry , Auranofin/chemistry , Auranofin/pharmacology , Cell Line, Tumor , Female , Gold/chemistry , Humans
13.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886853

ABSTRACT

Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3-, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens' group we observed a higher tendency to react, attributable to the ligands' effect. The chemical and mechanistic implications of these meaningful differences are discussed.


Subject(s)
Prodrugs , Adjuvants, Immunologic/therapeutic use , Ethylenes , Ligands , Prodrugs/pharmacology , Tellurium
14.
Cancer Drug Resist ; 5(1): 1-14, 2022.
Article in English | MEDLINE | ID: mdl-35582525

ABSTRACT

Today colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are urgently needed and intensely sought. Platinum drugs, oxaliplatin in particular, were reported to produce some significant benefit in CRC treatment, triggering the general interest of medicinal chemists and oncologists for metal-based compounds as candidate anti-CRC drugs. Within this frame, gold compounds and, specifically, the established antiarthritic drug auranofin with its analogs, form a novel group of promising anticancer agents. Owing to its innovative mechanism of action and its favorable pharmacological profile, auranofin together with its derivatives are proposed here as novel experimental agents for CRC treatment, capable of overcoming resistance to platinum drugs. Some encouraging results in this direction have already been obtained. A few recent studies demonstrate that the action of auranofin may be further potentiated through the preparation of suitable pharmaceutical formulations capable of protecting the gold pharmacophore from unselective reactivity or through the design of highly synergic drug combinations. The perspectives of the research in this field are outlined.

15.
Int J Biol Macromol ; 211: 506-513, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35561865

ABSTRACT

The crystal structure of the human telomeric DNA Tel24 G-quadruplex (Tel24 = TAG3(T2AG3)3T) in complex with the novel [AuL] species (with L = 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine - TPymT-α) was solved by a novel joint molecular mechanical (MM)/quantum mechanical (QM) innovative approach. The quantum-refinement crystallographic method (crystallographic refinement enhanced with quantum mechanical calculation) was adapted to treat the [AuL]/G-quadruplex structure, where each gold complex in the binding site was found spread over four equally occupied positions. The four positions were first determined by docking restrained to the crystallographically determined metal ions' coordinates. Then, the quantum refinement method was used to resolve the poorly defined density around the ligands and improve the crystallographic determination, revealing that the binding preferences of this metallodrug toward Tel24 G-quadruplex arise from a combined effect of pyrimidine stacking, metal-guanine interactions and charge-charge neutralizing action of the π-acid triazine. The occurrence of interaction in solution with the Tel24 G-quadruplex DNA was further proved through DNA melting experiments, which showed a slight destabilisation of the quadruplex upon adduct formation.


Subject(s)
G-Quadruplexes , DNA/chemistry , Gold/chemistry , Humans , Ligands , Telomere , Triazines , X-Ray Diffraction
16.
Molecules ; 27(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35458776

ABSTRACT

Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.


Subject(s)
Auranofin , Staphylococcal Infections , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Auranofin/chemistry , Auranofin/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus
17.
Inorg Chem ; 61(7): 3240-3248, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35137586

ABSTRACT

Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.


Subject(s)
Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives
18.
Molecules ; 28(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36615466

ABSTRACT

Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Transition Elements , Humans , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Gold/therapeutic use
19.
Biomolecules ; 11(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34944502

ABSTRACT

Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antimony/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Chlorides/pharmacology , Indazoles/pharmacology , Organogold Compounds/pharmacology , Organometallic Compounds/pharmacology , Ruthenium Compounds/pharmacology , SARS-CoV-2/drug effects , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/pharmacology , Animals , Antimony/chemistry , Antiviral Agents/chemistry , Cell Line , Chlorides/chemistry , Chlorocebus aethiops , Drug Discovery , Humans , Indazoles/chemistry , Organogold Compounds/chemistry , Organometallic Compounds/chemistry , Ruthenium Compounds/chemistry , Vero Cells
20.
Biomedicines ; 9(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064364

ABSTRACT

This article provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.

SELECTION OF CITATIONS
SEARCH DETAIL