Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38003985

ABSTRACT

Background and Objectives: One's quality of life depends on overall health, and in particular, oral health, which has been and continues to become a public health issue through frequent manifestations in various forms, from simple oral stomatitis (inflammations of the oral cavity) to the complicated oral health pathologies requiring medical interventions and treatments (caries, pulp necrosis and periodontitis). The aim of this study focused on the preparation and evaluation of vitamins (vitamin A, B1 and B6) incorporated into several silicone-based lining materials as a new alternative to therapeutically loaded materials designed as oral cavity lining materials in prosthodontics. Materials and Methods: Silicone-based liners containing vitamins were prepared by mixing them in solution and becoming crosslinked, and then they were characterized using Fourier-transform infrared (FT-IR) spectroscopy to confirm the incorporation of the vitamins into the silicone network; scanning electron microscopy (SEM) to evidence the morphology of the liner materials; dynamic vapor sorption (DVS) to evaluate their internal hydrophobicity, swelling in environments similar to biological fluids and mechanical test to demonstrate tensile strength; MTT to confirm their biocompatibility on normal cell cultures (fibroblast) and mucoadhesivity; and histopathological tests on porcine oral mucosa to highlight their potential utility as soft lining materials with improved efficiency. Results: FT-IR analysis confirmed the structural peculiarities of the prepared lining materials and the successful incorporation of vitamins into the silicone matrix. The surface roughness of the materials was lower than 0.2 µm, while in cross-section, the lining materials showed a compact morphology. It was found that the presence of vitamins induced a decrease in the main mechanical parameters (strength and elongation at break, Young's modulus) and hydrophobicity, which varied from one vitamin to another. A swelling degree higher than 8% was found in PBS 6.8 (artificial saliva) and water. Hydrolytic stability studies in an artificial saliva medium showed the release of low concentrations of silicone and vitamin fragments in the first 24 h, which increased the swelling behavior of the materials, diffusion and solubility of the vitamins. The microscopic images of fibroblast cells incubated with vitamin liners revealed very good biocompatibility. Also, the silicone liners incorporating the vitamins showed good mucoadhesive properties. The appearance of some pathological disorders with autolysis processes was more pronounced in the case of vitamin A liners. Conclusions: The addition of the vitamins was shown to have a beneficial effect that was mainly manifested as increased biocompatibility, hydrolytic stability and mucoadhesiveness with the mucosa of the oral cavity and less of an effect on the mechanical strength. The obtained lining materials showed good resistance in simulated biological media but caused a pronounced autolysis phenomenon, as revealed by histopathological examination, showing that these materials may have broad implications in the treatment of oral diseases.


Subject(s)
Denture Liners , Silicone Elastomers , Animals , Swine , Silicone Elastomers/chemistry , Vitamins , Vitamin A , Mouth Mucosa , Quality of Life , Saliva, Artificial , Spectroscopy, Fourier Transform Infrared , Materials Testing , Vitamin K
2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834134

ABSTRACT

Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.


Subject(s)
Anti-Infective Agents , Breast Neoplasms , Nanoparticles , Animals , Humans , Swine , Female , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Breast Neoplasms/drug therapy , Anti-Infective Agents/therapeutic use , Drug Carriers/chemistry , Porosity , Drug Liberation
3.
Biomedicines ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761013

ABSTRACT

Dental composites, through their structural diversity, represent the biomaterials frequently used in dental reconstructive therapy. The aim of our study was to observe the influence of different beverage environment conditions on seven types of obturation dental materials with different compositions. Our research focused on the surface modification analysis of the materials after the immersion in the different beverages; in this regard, we used the EDAX technique correlated with the energy-dispersive X-ray fluorescence (XRF). The pH of the drinks and that of the simulated saliva solution were determined by the titrimetric method, a sodium hydroxide solution 0.1 mol/dm3 was prepared and used for the titration. An amount of 5 mL of each analyzed solution was added to 15 mL of distilled water to obtain a dilution, to which 3 drops of phenolphthalein (as a color indicator-Phenolphthalein, 3,3-Bis(4-hydroxyphenyl)-1(3H)-isobenzofuranone, C20H14O4 Mw: 318.32, purchased from Merck) were added for each analysis. For each solution, the experiment was repeated three times in order to obtain accurate results. The results of our study materialized into a real plea for modifying the patients' behavior in terms of diet and preferences for acidic drinks, so that their quality-of-life valence can be improved by keeping the composite materials in a long-term unalterable state on the one hand; on the other hand, systemic damage can be prevented as well.

4.
Pharmaceutics ; 14(12)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36559331

ABSTRACT

Two chemical motifs of interest for medicinal chemistry, silatrane as 1-(3-aminopropyl) silatrane (SIL M), and nitro group attached in position 5 to salicylaldehyde, are coupled in a new structure, 1-(3-{[(2-hydroxy-5-nitrophenyl)methylidene]amino}propyl)silatrane (SIL-BS), through an azomethine moiety, also known as a versatile pharmacophore. The high purity isolated compound was structurally characterized by an elemental, spectral, and single crystal X-ray diffraction analysis. Given the structural premises for being a biologically active compound, different specific techniques and protocols have been used to evaluate their in vitro hydrolytic stability in simulated physiological conditions, the cytotoxicity on two cancer cell lines (HepG2 and MCF7), and protein binding ability-with a major role in drug ADME (Absorption, Distribution, Metabolism and Excretion), in parallel with those of the SIL M. While the latter had a good biocompatibility, the nitro-silatrane derivative, SIL-BS, exhibited a higher cytotoxic activity on HepG2 and MCF7 cell lines, performance assigned, among others, to the known capacity of the nitro group to promote a specific cytotoxicity by a "activation by reduction" mechanism. Both compounds exhibited increased bio- and muco-adhesiveness, which can favor an optimized therapeutic effect by increased drug permeation and residence time in tumor location. Additional benefits of these compounds have been demonstrated by their antimicrobial activity on several fungi and bacteria species. Molecular docking computations on Human Serum Albumin (HSA) and MPRO COVID-19 protease demonstrated their potential in the development of new drugs for combined therapy.

5.
Gels ; 8(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36005120

ABSTRACT

Recently, the development of new materials with the desired characteristics for functional tissue engineering, ensuring tissue architecture and supporting cellular growth, has gained significant attention. Hydrogels, which possess similar properties to natural cellular matrixes, being able to repair or replace biological tissues and support the healing process through cellular proliferation and viability, are a challenge when designing tissue scaffolds. This paper provides new insights into hydrogel-based polymeric blends (hydroxypropyl cellulose/Pluronic F68), aiming to evaluate the contributions of both components in the development of new tissue scaffolds. In order to study the interactions within the hydrogel blends, FTIR and 1HNMR spectroscopies were used. The porosity and the behavior in moisture medium were highlighted by SEM and DVS analyses. The biodegradability of the hydrogel blends was studied in a simulated biological medium. The hydrogel composition was determinant for the scaffold behavior: the HPC component was found to have a great influence on the BET and GAB areas, on the monolayer values estimated from sorption-desorption isotherms and on mucoadhesivity on small intestine mucosa, while the Pluronic F68 component improved the thermal stability. All blends were also found to have good mechanical strength and increased biocompatibility on the NHDF cell line. Based on their particular compositions and increased mucoadhesivity on small intestine mucosa, these polymeric blends could be effective in the repair or recovery of damaged cell membranes (due to the contribution of Pluronic F68) or in control drug-delivery intestinal formulations.

6.
Gels ; 8(7)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35877501

ABSTRACT

Allantoin and its ß-cyclodextrin and hydroxypropyl-ß-cyclodextrin inclusion complexes 1:1 have been used to prepare carbopol-based mucoadhesive gels. The gelation process occurred by adjustment with glycerol 10% in the presence of triethanolamine. The structural features induced by the presence of allantoin and the corresponding ß-cyclodextrins inclusion complexes have been first investigated by infrared spectroscopy highlighting strong interactions within the gels network and ideal crosslinks for the self-healing behavior. The hydrophilicity of the gels was investigated by the determination of the surface tension parameters and the free energy of hydration. The interfacial free energy values indicated prolonged biocompatibility with blood. The gels-water molecule interactions in terms of sorption, permeability, and diffusion coefficients were evaluated by dynamic vapor sorption analysis. The self-assembly process through intermolecular H-bonding, the high hydrophilicity, the mechanical performance, the hydrolytic stability in simulated biological media, the biocompatibility with normal human dermal fibroblast (NHDF) cells, the mucoadhesivity and antimicrobial activity on selected microorganism species (S. Aureus and C. albicans) of the allantoin-based gels recommend them as promising scaffold alternatives in regenerative medicine.

7.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209115

ABSTRACT

Two polysaccharides (cellulose and chitosan) and polyurethane dissolved in 1-ethyl-3-methylimidazolium chloride represented the matrix for the obtainment of new composite formulations comprised of lignin, ferrite-lignin hybrid and ketoconazole. The mechanical performances (Young's modulus and compressive strength) increased with the filler addition. The nature of the filler used in the studied formulations influenced both bioadhesion and mucoadhesion parameters. It was found that the incorporation of lignin and ferrite-lignin hybrid into the matrix has influenced the in vitro rate of ketoconazole release, which is described by the Korsmeyer-Peppas model. All materials exhibited activity against Gram positive (Staphylococcus aureus ATCC 25923) and Gram negative (Escherichia coli ATCC 25922) bacteria.

8.
Int J Biol Macromol ; 162: 1262-1275, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32585272

ABSTRACT

New mucoadhesive blends of sodium deoxycholate-based poly(ester ether)urethane ionomer (PU) and hydroxypropyl cellulose (HPC) are prepared. The presence of the intermolecular interactions between the polymeric components has been investigated by FTIR spectroscopy indicating their miscibility in the solid phase. DSC studies also revealed a single glass transition of the blends, which is indicative of miscibility of PU and HPC in the amorphous phase. The amount of HPC in the blends influences strongly the physicochemical and mucoadhesion/bioadhesion properties. It was found that the value of area attributed to ordered hydrogen bonding (FTIR), the onset temperature values of thermal degradation in N2 flow (TG/DTG), the values of the sorption capacity (Dynamic Vapor Sorption-DVS), the values of the apparent viscosity (rheological measurements) and mucoadhesion/bioadhesion properties increased by increasing the HPC content in the blends. Complex viscosity revealed shear thinning behavior for all the studied solutions evidencing the contributive role of polymer viscoelasticity on mucoadhesion. It was found that both G' and G" increase with an increase in angular frequency and G">G' which is characteristic for liquid-like (sol state) behavior for all blended solutions and this behavior is helpful in the adhesion with mucosa surface. Mucoadhesion of PU/HPC blends was assessed in the stomach mucosa at pH 2.6 and 37 °C. Bioadhesion test was performed at pH 7.4 and 37 °C and revealed a stronger interaction of PU/HPC blends with cellulose membrane than with stomach mucosa. The similar nature of the HPC and cellulose membrane determines additional adhesion forces and implicity high adhesion properties. The HPC component increases the hydrophilicity of the blends as DVS analysis revealed, but also leads to hydrolytic degradation. FTIR spectroscopy analysis was used to evaluate the hydrolytic stability in acid (pH 2.6) and slightly alkaline (pH 7.4) PBS media and a mechanism of degradation has been proposed.


Subject(s)
Cellulose/analogs & derivatives , Deoxycholic Acid/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Tissue Adhesives/chemistry , Cellulose/chemistry , Humans , Mucous Membrane
9.
Polymers (Basel) ; 12(5)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456132

ABSTRACT

Here we present a new biomaterial based on cellulose, collagen and polyurethane, obtained by dissolving in butyl imidazole chloride. This material served as a matrix for the incorporation of tannin and lipoic acid, as well as bioactive substances with antioxidant properties. The introduction of these bioactive principles into the base matrix led to an increase of the compressive strength in the range 105-139 kPa. An increase of 29.85% of the mucoadhesiveness of the film containing tannin, as compared to the reference, prolongs the bioavailability of the active substance; a fact also demonstrated by the controlled release studies. The presence of bioactive principles, as well as tannins and lipoic acid, gives biomaterials an antioxidant capacity on average 40%-50% higher compared to the base matrix. The results of the tests of the mechanical resistance, mucoadhesiveness, bioadhesiveness, water absorption and antioxidant capacity of active principles recommend these biomaterials for the manufacture of cosmetic masks or patches.

SELECTION OF CITATIONS
SEARCH DETAIL
...