Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760893

ABSTRACT

RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval.

2.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195652

ABSTRACT

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Animals , Humans , Mice , Cell Nucleus , Disease Models, Animal , Early Detection of Cancer , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Collagen/metabolism
3.
J Tissue Eng ; 14: 20417314231190147, 2023.
Article in English | MEDLINE | ID: mdl-37842206

ABSTRACT

The cellular and molecular mechanisms that are responsible for the poor regenerative capacity of the adult heart after myocardial infarction (MI) are still unclear and their understanding is crucial to develop novel regenerative therapies. Considering the lack of reliable in vitro tissue-like models to evaluate the molecular mechanisms of cardiac regeneration, we used cryoinjury on rat Engineered Heart Tissues (rEHTs) as a new model which recapitulates in part the in vivo response after myocardial injury of neonatal and adult heart. When we subjected to cryoinjury immature and mature rEHTs, we observed a significant increase in cardiomyocyte (CM) DNA synthesis when compared to the controls. As expected, the number of mitotic CMs significantly increases in immature rEHTs when compared to mature rEHTs, suggesting that the extent of CM maturation plays a crucial role in their proliferative response after cryoinjury. Moreover, we show that cryoinjury induces a temporary activation of fibroblast response in mature EHTs, similar to the early response after MI, that is however incomplete in immature EHTs. Our results support the hypothesis that the endogenous maturation program in cardiac myocytes plays a major role in determining the proliferative response to injury. Therefore, we propose rEHTs as a robust, novel tool to in vitro investigate critical aspects of cardiac regeneration in a tissue-like asset free from confounding factors in response to injury, such as the immune system response or circulating inflammatory cytokines.

4.
Stem Cell Res ; 71: 103172, 2023 09.
Article in English | MEDLINE | ID: mdl-37535990

ABSTRACT

Dilated cardiomyopathy (DCM) is a common heart disorder caused by genetic and non-genetic etiologies, characterized by left ventricular dilatation and contractile dysfunction. Here, we created a human induced pluripotent stem cell line from peripheral blood mononuclear cells using non-integrating vectors from a patient carrying a heterozygous LMNA variant (c.481G > A, p.Glu161Lys, NM_170707.4). The obtained EURACi015-A line, showed the typical morphology of pluripotent cells, normal karyotype and exhibited pluripotency markers and a trilineage differentiation potential. This cell line can be successfully differentiated into cardiomyocytes and endothelial cells. This line represents a human in vitro model to study the genetic basis of DCM.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Humans , Cardiomyopathy, Dilated/genetics , Induced Pluripotent Stem Cells/metabolism , Lamin Type A/genetics , Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Mutation
5.
Cell Death Dis ; 14(7): 437, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454154

ABSTRACT

Pulmonary fibrosis is a devastating disease, in which fibrotic tissue progressively replaces lung alveolar structure, resulting in chronic respiratory failure. Alveolar type II cells act as epithelial stem cells, being able to transdifferentiate into alveolar type I cells, which mediate gas exchange, thus contributing to lung homeostasis and repair after damage. Impaired epithelial transdifferentiation is emerging as a major pathogenetic mechanism driving both onset and progression of fibrosis in the lung. Here, we show that lung endothelial cells secrete angiocrine factors that regulate alveolar cell differentiation. Specifically, we build on our previous data on the anti-fibrotic microRNA-200c and identify the Vascular Endothelial Growth Factor receptor 1, also named Flt1, as its main functional target in endothelial cells. Endothelial-specific knockout of Flt1 reproduces the anti-fibrotic effect of microRNA-200c against pulmonary fibrosis and results in the secretion of a pool of soluble factors and matrix components able to promote epithelial transdifferentiation in a paracrine manner. Collectively, these data indicate the existence of a complex endothelial-epithelial paracrine crosstalk in vitro and in vivo and position lung endothelial cells as a relevant therapeutic target in the fight against pulmonary fibrosis.


Subject(s)
MicroRNAs , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/metabolism , Cell Transdifferentiation , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Lung/metabolism , Alveolar Epithelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Trends Pharmacol Sci ; 43(11): 894-905, 2022 11.
Article in English | MEDLINE | ID: mdl-35779965

ABSTRACT

Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.


Subject(s)
Biological Products , Biosimilar Pharmaceuticals , Heart Diseases , Biological Products/pharmacology , Biological Products/therapeutic use , Biosimilar Pharmaceuticals/therapeutic use , Heart Diseases/drug therapy , Humans
8.
J Cardiovasc Med (Hagerstown) ; 21(8): 556-561, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32520856

ABSTRACT

BACKGROUND: Population aging has increased together with the need for cardiovascular care. Understanding the relevance of cardiovascular conditions in the very old is crucial to developing a specific and rationale therapeutic approach. Centenarians can be considered a model of successful aging, although the impact of cardiovascular disease in this population is still unclear. AIM: To evaluate the cardiovascular health status of a subset of centenarians enrolled in the Centenari a Trieste study and living in the province of Trieste to describe the prevalence of cardiovascular conditions among them. METHODS: The current study included 20 individuals born before 1919 and living in the province of Trieste as of 1 May 2019. All centenarians were able to give consent and were subjected to an in-home complete clinical assessment focused on cardiovascular conditions, ECG and echocardiography. RESULTS: The majority of centenarians were women (85%) and were not taking any chronic cardiovascular medication (55%). No centenarians had a history of ischemic heart disease while about one-third had signs suggestive of heart failure at examination (20%). Atrial fibrillation was present in 20% of individuals and conduction disorders were uncommon. Although the majority of individuals had a preserved left ventricular function, diastolic function was abnormal in 80% of enrolled centenarians that, however, was mild in 73% of cases. CONCLUSION: This is the second study to perform in-home echocardiography in centenarians and the first to characterize the cardiovascular status of centenarians living in Trieste. The majority of centenarians had asymptomatic diastolic dysfunction and were naïve from cardiovascular therapy. The recruitment of new individuals from the Trieste area is continuing to perform analyses on clinical, genetic and environmental factors that may predict greater longevity in this geographical context and unveil mechanisms that regulate cardiac aging associated with increased lifespan.


Subject(s)
Aging , Cardiovascular Diseases/diagnostic imaging , Echocardiography, Doppler , Home Care Services , Age Factors , Aged, 80 and over , Asymptomatic Diseases , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Diastole , Electrocardiography , Female , Health Status , Hemodynamics , Humans , Italy/epidemiology , Male , Predictive Value of Tests , Ventricular Function, Left
9.
J Thorac Dis ; 9(Suppl 1): S17-S29, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28446965

ABSTRACT

Worldwide increase in life expectancy is a major contributor to the epidemic of chronic degenerative diseases. Aging, indeed, simultaneously affects multiple organ systems, and it has been hypothesized that systemic alterations in regulators of tissue physiology may regulate this process. Cardiac aging itself is a major risk factor for cardiovascular diseases and, because of the intimate relationship with the brain, may contribute to increase the risk of neurodegenerative disorders. Blood-borne factors may play a major role in this complex and still elusive process. A number of studies, mainly based on the revival of parabiosis, a surgical technique very popular during the 70s of the 20th century to study the effect of a shared circulation in two animals, have indeed shown the potential that humoral factors can control the aging process in different tissues. In this article we review the role of circulating factors in cardiovascular aging. A better understanding of these mechanisms may provide new insights in the aging process and provide novel therapeutic opportunities for chronic age-related disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...