Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res ; 1534: 1-12, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23973748

ABSTRACT

A brief training in a pool maze, with or without cognitive tasks, modifies the synaptogenesis and maturation of newborn neurons in adult rat dentate gyrus. These types of trainings have many aspects, including physical activity and exploration. Therefore, to evaluate whether physical exercise and environment exploration are able to affect synapse formation and the maturation of adult-generated neurons, GFP-retrovirus infusion was performed on rats which, on the fourth day after injection, were housed under running conditions or allowed to explore an enriched environment briefly in the absence of exercise for the following three days. Afterward, at the end of the trainings, electrophysiological and morphological studies were conducted. Considering that neurotrophic factors increase after exercise or environment exploration, hippocampal BDNF levels and TrkB receptor activation were evaluated. In this study, we show that both spontaneous physical activity and enriched environment exploration induced synaptogenesis and T-type voltage-dependent Ca(2+) currents in very immature neurons. Hippocampal BDNF levels and TrkB receptor activation were determined to be increasing following physical activity and exploration. A possible contribution of BDNF signaling in mediating the observed effects was supported by the use of 7-8-dihydroxyflavone, a selective TrkB agonist, and of ANA-12, an inhibitor of TrkB receptors.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dentate Gyrus/physiology , Exploratory Behavior , Neurons/physiology , Physical Conditioning, Animal , Synapses/physiology , Adaptation, Physiological , Animals , Dendrites/ultrastructure , Exercise Test , Male , Rats , Rats, Sprague-Dawley , Receptor, trkB/metabolism
2.
Eur J Histochem ; 57(4): e37, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24441190

ABSTRACT

Myotendinous junctions (MTJs) are specialized sites on the muscle surface where forces generated by myofibrils are transmitted across the sarcolemma to the extracellular matrix. At the ultrastructural level, the interface between the sarcolemma and extracellular matrix is highly folded and interdigitated at these junctions. In this study, the effect of exercise and growth hormone (GH) treatments on the changes in MTJ structure that occur during muscle unloading, has been analyzed. Twenty hypophysectomized rats were assigned randomly to one of five groups: ambulatory control, hindlimb unloaded, hindlimb unloaded plus exercise (3 daily bouts of 10 climbs up a ladder with 50% body wt attached to the tail), hindlimb unloaded plus GH (2 daily injections of 1 mg/kg body wt, i.p.), and hindlimb unloaded plus exercise plus GH. MTJs of the plantaris muscle were analyzed by electron microscopy and the contact between muscle and tendon was evaluated using an IL/B ratio, where B is the base and IL is the interface length of MTJ's digit-like processes. After 10 days of unloading, the mean IL/B ratio was significantly lower in unloaded (3.92), unloaded plus exercise (4.18), and unloaded plus GH (5.25) groups than in the ambulatory control (6.39) group. On the opposite, the mean IL/B ratio in the group treated with both exercise and GH (7.3) was similar to control. These findings indicate that the interaction between exercise and GH treatments attenuates the changes in MTJ structure that result from chronic unloading and thus can be used as a countermeasure to these adaptations.


Subject(s)
Hindlimb Suspension/physiology , Human Growth Hormone/pharmacology , Muscle, Skeletal/ultrastructure , Physical Conditioning, Animal/physiology , Animals , Hypophysectomy , Male , Muscle, Skeletal/anatomy & histology , Organ Size , Pituitary Gland/physiology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Tendons/physiology , Tendons/ultrastructure
3.
Micron ; 39(7): 843-51, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18337109

ABSTRACT

During muscle tissue differentiation, in particular in the formation of myotubes from the myoblasts, plasma membrane changes its morpho-functional characteristics. In this study, muscle cell membrane behaviour has been studied along the differentiation of C2C12, a mouse myoblastic adherent cell line. Flat undifferentiated cells, cultured for 3-4 days in the differentiation medium, progressively become thick, long and multinucleated myotubes covered with microvilli. They lose stress fibers and adhesion to the underlying substrate evidentiating an actin redistribution, followed by the spatial organization of thick and thin myofilaments. Sarcomeres and myofibrils occasionally appear, even if a certain percentage of "myosacs" containing randomly oriented filaments can be identified all along the differentiation. M-cadherin, a molecule involved in cell-cell adhesion, also appears in the early differentiation stage, during myoblast fusion. Occasional focal contractions can also be observed in myotubes, which prompt an electrophysiological membrane analysis. When studied by means of patch clamp technique, resting membrane potential appears to undergo a transient depolarization, while input resistance increases until day 5 after differentiation induction, then successively decreases. Capacitance declines until day 5, later appearing enhanced. Moreover, with the induction of differentiation, the pattern of functional voltage-dependent ion channels changes. Therefore, during myogenesis, cell maturation is coupled with changes in cell membrane morphological features and functional characteristics.


Subject(s)
Cell Differentiation/physiology , Muscle Development/physiology , Muscle, Skeletal/cytology , Myoblasts/cytology , Animals , Cadherins/metabolism , Cell Line , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Myoblasts/physiology , Myoblasts/ultrastructure , Voltage-Dependent Anion Channels/physiology
4.
Arch Ital Biol ; 144(2): 115-26, 2006 May.
Article in English | MEDLINE | ID: mdl-16642790

ABSTRACT

The fate of adult-generated neurons in dentate gyrus is mainly determined early, before they receive synapses. In developing brain, classical neurotransmitters such as GABA and glutamate exert trophic effects before synaptogenesis. In order for this to occur in adult brain as well, immature non-contacted cells must express functional receptors to GABA and glutamate. In this investigation, patch-clamp recordings were used in adult rat dentate gyrus slices to assess the presence and analyze the characteristics of GABA- and glutamate-evoked currents in highly immature, synaptically-silent granule cells. Whole-cell patch-clamp recordings showed that all the analyzed cells responded to puff application of GABA and most of them responded to glutamate. Currents evoked by GABA were mediated exclusively by GABAA receptors and those elicited by glutamate were mediated by NMDA and AMPA/Kainate receptors. GABAA receptor-mediated currents were reduced by furosemide, which suggests that synaptically-silent immature neurons express high-affinity, alpha4-subunit-containing GABAA receptors. Gramicidin-perforated-patch recordings showed that GABAA receptor-mediated currents exerted a depolarizing effect due to high intracellular chloride concentration. Synaptically-silent immature cells shared morphological and electrophysiological properties with GFP-expressing, 7-day-old adult-generated granule layer cells, indicating that they could be in the first week of life, the period of maximal newborn cell death. Moreover, the presence of functional GABA and glutamate receptors was confirmed in these GFP-expressing cells. Present findings are mostly consistent with previous data obtained in female mice undergoing spontaneous activity and in transgenic mice, except for some inconsistencies about the presence of functional glutamatergic receptors. We speculate that adult-generated, non-contacted granule cells may be able to sense activity-related variations of GABA and glutamate extracellular levels. This condition is necessary, even if not sufficient, for these neurotransmitters to have a direct role in addressing cell survival.


Subject(s)
Dentate Gyrus/metabolism , Neurons/metabolism , Receptors, GABA/metabolism , Receptors, Glutamate/metabolism , Stem Cells/metabolism , Synapses/metabolism , Animals , Cell Differentiation/physiology , Dentate Gyrus/cytology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Glutamic Acid/metabolism , Ion Channels/drug effects , Ion Channels/physiology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Organ Culture Techniques , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, GABA/drug effects , Receptors, Glutamate/drug effects , Stem Cells/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL