Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 21(5): 1266-1273, 2023 05.
Article in English | MEDLINE | ID: mdl-36740042

ABSTRACT

BACKGROUND: Statins efficiently lower cholesterol and also exert pleiotropic effects that extend beyond lipid lowering. In a recent pilot study, valuable information on the carboxypeptidase U (CPU) system in hyperlipidemia and the effect of statin therapy was collected. It was shown that proCPU levels are increased in hyperlipidemic patients. Statins significantly decreased proCPU levels and improved plasma fibrinolysis. Furthermore, it was suggested that patients with high baseline proCPU levels are most likely to benefit from statin therapy. OBJECTIVES: We aimed to further substantiate the effect of hyperlipidemia and statin therapy on CPU-related parameters in a larger cohort of hyperlipidemic and statin-treated individuals. METHODS: Blood was collected from 141 individuals treated with different dosages of atorvastatin (10-80 mg), 38 normolipidemic, and 37 hyperlipidemic controls. Lipid parameters and markers of fibrinolysis (proCPU and clot lysis time) were determined and compared between the groups. RESULTS: Pilot study results of high proCPU concentrations in hyperlipidemic patients and the proCPU-reducing effect of atorvastatin were confirmed. Accordingly, an improvement in plasma fibrinolytic potential was seen under the influence of atorvastatin. High interindividual variation in proCPU concentrations was observed in the hyperlipidemic cohort, with up to 80% higher proCPU levels compared with normolipidemic controls. Furthermore, proCPU concentration and the dosage of atorvastatin were inversely correlated. CONCLUSIONS: This study clearly shows that plasma proCPU concentrations and its expected effect on the fibrinolytic rate (as measured by clot lysis time) are increased in hyperlipidemic patients and that these effects can be normalized (and even further reduced compared with normolipidemic patients) by atorvastatin treatment.


Subject(s)
Carboxypeptidase B2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pilot Projects , Thrombolytic Therapy
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835137

ABSTRACT

Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources.


Subject(s)
Carboxypeptidase B2 , Macrophages , Monocytes , Humans , Carboxypeptidase B2/genetics , Carboxypeptidase B2/metabolism , Cell Differentiation/genetics , Inflammation , Macrophage Activation/genetics , Macrophages/metabolism , Monocytes/metabolism , RNA, Messenger
3.
Clin Chim Acta ; 531: 4-11, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35283094

ABSTRACT

BACKGROUND: COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS: Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS: Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION: The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.


Subject(s)
COVID-19 , Shock, Septic , Carboxypeptidases , Dipeptidyl Peptidase 4 , Endopeptidases , Gelatinases , Humans , Membrane Proteins , Peptide Hydrolases , Proline , Serine Endopeptidases
4.
J Clin Med ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35329820

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral lower respiratory tract infection caused by the highly transmissible and pathogenic SARS-CoV-2 (severe acute respiratory-syndrome coronavirus-2). Besides respiratory failure, systemic thromboembolic complications are frequent in COVID-19 patients and suggested to be the result of a dysregulation of the hemostatic balance. Although several markers of coagulation and fibrinolysis have been studied extensively, little is known about the effect of SARS-CoV-2 infection on the potent antifibrinolytic enzyme carboxypeptidase U (CPU). Blood was collected longitudinally from 56 hospitalized COVID-19 patients and 32 healthy controls. Procarboxypeptidase U (proCPU) levels and total active and inactivated CPU (CPU+CPUi) antigen levels were measured. At study inclusion (shortly after hospital admission), proCPU levels were significantly lower and CPU+CPUi antigen levels significantly higher in COVID-19 patients compared to controls. Both proCPU and CPU+CPUi antigen levels showed a subsequent progressive increase in these patients. Hereafter, proCPU levels decreased and patients were, at discharge, comparable to the controls. CPU+CPUi antigen levels at discharge were still higher compared to controls. Baseline CPU+CPUi antigen levels (shortly after hospital admission) correlated with disease severity and the duration of hospitalization. In conclusion, CPU generation with concomitant proCPU consumption during early SARS-CoV-2 infection will (at least partly) contribute to the hypofibrinolytic state observed in COVID-19 patients, thus enlarging their risk for thrombosis. Moreover, given the association between CPU+CPUi antigen levels and both disease severity and duration of hospitalization, this parameter may be a potential biomarker with prognostic value in SARS-CoV-2 infection.

5.
Transl Stroke Res ; 13(6): 959-969, 2022 12.
Article in English | MEDLINE | ID: mdl-34796454

ABSTRACT

The antifibrinolytic enzyme carboxypeptidase U (CPU, TAFIa, CPB2) is an appealing target for the treatment of acute ischemic stroke (AIS). Increased insights in CPU activation and inactivation during thrombolysis (rtPA) with or without endovascular thrombectomy (EVT) are required to develop CPU inhibitors as profibrinolytic agents with optimal benefits/risks. Therefore, CPU kinetics during ischemic stroke treatment were evaluated. AIS patients with documented cerebral artery occlusion receiving rtPA (N = 20) or rtPA + EVT (N = 16) were included. CPU activation during thrombolysis was measured by an ultrasensitive HPLC-based CPU activity method and by an ELISA measuring both CPU and inactivated CPU (CPU + CPUi). Intravenous blood samples were collected at admission and throughout the first 24 h. Additional in situ blood samples were collected in the rtPA + EVT cohort proximal from the thrombus. The NIHSS score was determined at baseline and 24 h. CPU activity and CPU + CPUi levels increased upon rtPA administration and reached peak values at the end of thrombolysis (1 h). High inter-individual variability was observed in both groups. CPU activity decreased rapidly within 3 h, while CPU + CPUi levels were still elevated at 7 h. CPU activity or CPU + CPUi levels were similar in in situ and peripheral samples. No correlation between CPU or CPU + CPUi and NIHSS or thrombus localization was found. The CPU system was rapidly activated and deactivated following thrombolysis and thrombectomy in stroke patients, suggesting that a CPU inhibitor would have to be administered during rtPA infusion and over the next few hours. The high CPU generation variability suggests that some patients may not respond to the treatment. EudraCT number 2017-002760-41.


Subject(s)
Carboxypeptidase B2 , Ischemic Stroke , Stroke , Thrombosis , Humans , Carboxypeptidase B2/physiology , Thrombectomy , Tissue Plasminogen Activator/therapeutic use , Stroke/drug therapy , Stroke/surgery , Thrombolytic Therapy/methods , Treatment Outcome
6.
Pharmaceutics ; 13(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684024

ABSTRACT

Statins (hydroxymethyl-glutaryl-CoA-reductase inhibitors) lower procarboxypeptidase U (proCPU, TAFI, proCPB2). However, it is challenging to prove whether this is a lipid or non-lipid-related pleiotropic effect, since statin treatment decreases cholesterol levels in humans. In apolipoprotein E-deficient mice with a heterozygous mutation in the fibrillin-1 gene (ApoE-/-Fbn1C1039G+/-), a model of advanced atherosclerosis, statins do not lower cholesterol. Consequently, studying cholesterol-independent effects of statins can be achieved more straightforwardly in these mice. Female ApoE -/-Fbn1C1039G+/- mice were fed a Western diet (WD). At week 10 of WD, mice were divided into a WD group (receiving WD only) and a WD + atorvastatin group (receiving 10 mg/kg/day atorvastatin +WD) group. After 15 weeks, blood was collected from the retro-orbital plexus, and the mice were sacrificed. Total plasma cholesterol and C-reactive protein (CRP) were measured with commercially available kits. Plasma proCPU levels were determined with an activity-based assay. Total plasma cholesterol levels were not significantly different between both groups, while proCPU levels were significantly lower in the WD + atorvastatin group. Interestingly proCPU levels correlated with CRP and circulating monocytes. In conclusion, our results confirm that atorvastatin downregulates proCPU levels in ApoE-/-Fbn1C1039G+/- mice on a WD, and evidence was provided that this downregulation is a pleiotropic effect of atorvastatin treatment.

7.
Clin Ther ; 43(5): 908-916, 2021 05.
Article in English | MEDLINE | ID: mdl-33910760

ABSTRACT

PURPOSE: Statins are commonly used in patients with hypercholesterolemia to lower their cholesterol levels and to reduce their cardiovascular risk. There is also considerable evidence that statins possess a range of cholesterol-independent effects, including profibrinolytic properties. This pilot study aimed to explore the influence of statins on procarboxypeptidase U (proCPU) biology and to search for possible effects and associations that can be followed up in a larger study. METHODS: Blood was collected from 16 patients with hyperlipidemia, before and after 3 months of statin therapy (simvastatin 20 mg or atorvastatin 20 mg). Fifteen age-matched normolipemic persons served as control subjects. Lipid parameters and markers of inflammation and fibrinolysis (proCPU levels and clot lysis times) were determined in all samples. FINDINGS: Mean (SD) proCPU levels were significantly higher in patients with hypercholesterolemia compared to control subjects (1186 [189] U/L vs 1061 [60] U/L). Treatment of these patients with a statin led to a significant average decrease of 11.6% in proCPU levels and brought the proCPU concentrations to the same level as in the control subjects. On a functional level, enhancement in plasma fibrinolytic potential was observed in the statin group, with the largest improvement in fibrinolysis seen in patients with the highest baseline proCPU levels and largest proCPU decrease upon statin treatment. IMPLICATIONS: Increased proCPU levels are present in patients with hyperlipidemia. Statin treatment significantly decreased proCPU levels and improved plasma fibrinolysis in these patients. Moreover, our study indicates that patients with high baseline proCPU levels are most likely to benefit from statin therapy. The latter should be examined further in a large cohort.


Subject(s)
Carboxypeptidase B2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperlipidemias , Fibrinolysis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pilot Projects
8.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477318

ABSTRACT

Procarboxypeptidase U (proCPU, TAFI, proCPB2) is a basic carboxypeptidase zymogen that is converted by thrombin(-thrombomodulin) or plasmin into the active carboxypeptidase U (CPU, TAFIa, CPB2), a potent attenuator of fibrinolysis. As CPU forms a molecular link between coagulation and fibrinolysis, the development of CPU inhibitors as profibrinolytic agents constitutes an attractive new concept to improve endogenous fibrinolysis or to increase the efficacy of thrombolytic therapy in thromboembolic diseases. Furthermore, extensive research has been conducted on the in vivo role of CPU in (the acute phase of) thromboembolic disease, as well as on the hypothesis that high proCPU levels and the Thr/Ile325 polymorphism may cause a thrombotic predisposition. In this paper, an overview is given of the methods available for measuring proCPU, CPU, and inactivated CPU (CPUi), together with a summary of the clinical data generated so far, ranging from the current knowledge on proCPU concentrations and polymorphisms as potential thromboembolic risk factors to the positioning of different CPU forms (proCPU, CPU, and CPUi) as diagnostic markers for thromboembolic disease, and the potential benefit of pharmacological inhibition of the CPU pathway.


Subject(s)
Carboxypeptidase B2/metabolism , Carboxypeptidase B2/physiology , Thromboembolism/metabolism , Blood Coagulation/physiology , Carboxypeptidase B2/genetics , Fibrinolysin/metabolism , Fibrinolysis/physiology , Genotype , Humans , Thrombin/metabolism , Thromboembolism/physiopathology , Thrombolytic Therapy/methods , Thrombosis/metabolism
9.
J Thromb Haemost ; 18(9): 2209-2214, 2020 09.
Article in English | MEDLINE | ID: mdl-32634856

ABSTRACT

BACKGROUND: Thrombomodulin-associated coagulopathy (TM-AC) is a rare bleeding disorder in which a single reported p.Cys537* variant in the thrombomodulin gene THBD causes high plasma thrombomodulin (TM) levels. High TM levels attenuate thrombin generation and delay fibrinolysis. OBJECTIVES: To report the characteristics of pedigree with a novel THBD variant causing TM-AC, and co-inherited deficiency of thrombin-activatable fibrinolysis inhibitor (TAFI). PATIENTS/METHODS: Identification of pathogenic variants in hemostasis genes by next-generation sequencing and case recall for deep phenotyping. RESULTS: Pedigree members with a previously reported THBD variant predicting p.Pro496Argfs*10 and chain truncation in TM transmembrane domain had abnormal bleeding and greatly increased plasma TM levels. Affected cases had attenuated thrombin generation and delayed fibrinolysis similar to previous reported TM_AC cases with THBD p.Cys537*. Coincidentally, some pedigree members also harbored a stop-gain variant in CPB2 encoding TAFI. This reduced plasma TAFI levels but was asymptomatic. Pedigree members with TM-AC caused by the p.Pro496Argfs*10 THBD variant and also TAFI deficiency had a partially attenuated delay in fibrinolysis, but no change in the defective thrombin generation. CONCLUSIONS: These data extend the reported genetic repertoire of TM-AC and establish a common molecular pathogenesis arising from high plasma levels of TM extra-cellular domain. The data further confirm that the delay in fibrinolysis associated with TM-AC is directly linked to increased TAFI activation. The combination of the rare variants in the pedigree members provides a unique genetic model to develop understanding of the thrombin-TM system and its regulation of TAFI.


Subject(s)
Blood Coagulation Disorders , Carboxypeptidase B2 , Carboxypeptidase B2/genetics , Fibrinolysis/genetics , Humans , Pedigree , Thrombin , Thrombomodulin/genetics
10.
J Thromb Haemost ; 17(6): 878-884, 2019 06.
Article in English | MEDLINE | ID: mdl-30887647

ABSTRACT

Essentials Hemolytic influence on the (pro)carboxypeptidase U ((pro)CPU) system is not known. In the current manuscript, this was assessed by spiking pooled normal plasma with hemolysate. CPU activity, proCPU levels, and clot lysis times showed a dose-dependent hemolytic bias. The observed bias in the several CPU related parameters is due to inhibition of CPU activity. INTRODUCTION: Spurious hemolysis of samples is the leading cause of interference in coagulation testing and was described to interfere in fibrinolysis assays. The influence of hemolysis on the procarboxypeptidase U (proCPU) system is not known. METHODS: By means of spiking of hemolysate in pooled normal plasma, the effect of hemolysis on CPU, proCPU, and functional clot lysis assays was assessed. The influence of hemolysis on CPU generation during in vitro clot lysis was also evaluated. Cutoffs corresponding to maximal acceptable bias were determined. RESULTS AND DISCUSSION: When active CPU was added to pooled plasma, a severe decrease in activity - up to 97.2% inhibition - was seen with increasing plasma concentrations of oxyhemoglobin (oxyHb) and the 10% cutoff value was found to be 0.3 g/L oxyHb. Using an activity-based assay, proCPU levels appeared to decrease gradually with increased hemolysis (maximal reduction of 19.5%) with a 10% cutoff value of 4.2 g/L oxyHb. The relative clot lysis time (CLT) showed a maximal negative bias of 68.5%. The reduction in CLT paralleled a significant reduction of the first CPU activity peak during clot lysis. The cutoff value for the CLT was 0.4 g/L oxyHb. In presence of thrombomodulin (TM), CLT+TM was not affected up to 8.0 g/L oxyHb. CONCLUSION: These data indicate a clear inhibition of the CPU system because of hemolysis resulting in an increase of lysis in functional fibrinolysis assays. We were able to quantify the inhibitory effect and to propose cutoff values for every parameter.


Subject(s)
Blood Coagulation Tests/methods , Carboxypeptidase B2/antagonists & inhibitors , Carboxypeptidase B2/blood , Hemolysis/physiology , Blood Coagulation Tests/statistics & numerical data , Fibrin Clot Lysis Time/methods , Fibrin Clot Lysis Time/statistics & numerical data , Fibrinolysis/physiology , Healthy Volunteers , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...