Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Life (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34833031

ABSTRACT

BACKGROUND: Gastrointestinal (GI) complaints are frequently noted in aging dystrophinopathy patients, yet their underlying molecular mechanisms are largely unknown. As dystrophin protein isoform 71 (Dp71) is particularly implicated in the development of smooth muscle cells, we evaluated its distribution in the neonatal and adult rat intestine in this study. METHODS: Dp71 expression levels were assessed in the proximal (duodenum, jejunum and ileum) and distal (caecum, colon and rectum) intestine by Western blotting and qPCR. In addition, the cellular distribution of total Dp was evaluated in the duodenum and colon by immunohistochemical colocalization studies with alpha-smooth muscle actin (aSMA), Hu RNA binding proteins C and D (HuC/HuD) for neurons and vimentin (VIM) for interstitial cells. RESULTS: In neonatal and adult rats, the distal intestine expressed 2.5 times more Dp71 protein than the proximal part (p < 0.01). This regional difference was not observed in Dp71 mRNA. During both stages, Dp-immunoreactivity was predominant in the muscularis propria, where it co-localized with aSMA and HuC/HuD. CONCLUSIONS: In neonatal and adult rats, Dp71 was expressed highest in the distal intestine. Together with the observation that Dp may be expressed by myenteric neurons, this warrants a paradigm shift in the treatment of GI comorbidities.

2.
Biomaterials ; 267: 120449, 2021 01.
Article in English | MEDLINE | ID: mdl-33129188

ABSTRACT

The clinical success rate of islet transplantation, namely independence from insulin injections, is limited by factors that lead to graft failure, including inflammation, acute ischemia, acute phase response, and insufficient vascularization. The ischemia and insufficient vascularization both lead to high levels of oxidative stress, which are further aggravated by islet encapsulation, inflammation, and undesirable cell-biomaterial interactions. To identify biomaterials that would not further increase damaging oxidative stress levels and that are also suitable for manufacturing a beta cell encapsulation device, we studied five clinically approved polymers for their effect on oxidative stress and islet (alpha and beta cell) function. We found that 300 poly(ethylene oxide terephthalate) 55/poly(butylene terephthalate) 45 (PEOT/PBT300) was more resistant to breakage and more elastic than other biomaterials, which is important for its immunoprotective function. In addition, it did not induce oxidative stress or reduce viability in the MIN6 beta cell line, and even promoted protective endogenous antioxidant expression over 7 days. Importantly, PEOT/PBT300 is one of the biomaterials we studied that did not interfere with insulin secretion in human islets.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Biocompatible Materials/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Oxidative Stress
3.
BMC Pulm Med ; 20(1): 112, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349726

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS: Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 µg/2 µl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS: Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 µM versus 7.05 ± 0.2 µM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION: Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.


Subject(s)
Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pulmonary Fibrosis/drug therapy , Quercetin/pharmacology , Animals , Bleomycin/toxicity , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Collagen/metabolism , Dietary Supplements , Disease Models, Animal , Lung/pathology , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Pulmonary Fibrosis/chemically induced , Tumor Necrosis Factor-alpha/metabolism
4.
Toxicol In Vitro ; 48: 318-328, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29432895

ABSTRACT

Regulation of DNA methylation plays a crucial role in biological processes and carcinogenesis. The formation of 5-hydroxymethylcytosine (5hmC) by oxidation of 5-methylcytosine (5mC) has been proposed as an intermediate of active demethylation. However, whether and how active demethylation is regulated by oxidative stress-related processes is not well understood. Here we investigated whether free oxygen radicals are capable of directly forming 5hmC and how this enhanced whole genome gene expression. We applied LC-MS/MS technology for the analysis of 5mC, 5hmC, 5-formylcytosine (5fC) and 5-hydroxymethyluracyl (5hmU) in HepG2 cells exposed to hydroxyl- and methyl radicals, formed by tert-butyl hydroperoxide (TBH) at multiple time points. We observed that TBH is able to induce a significant increase in 5hmC. A detailed evaluation of the hydroxymethylome using a combination of 5hmC-immunoprecipitation and microarrays resulted in the identification of highly dynamic modifications that appear to increase during prolonged oxidant exposure. Analyses of temporal gene expression changes in combination with network analysis revealed different subnetworks containing differentially expressed genes (DEGs) with differentially hydroxyl-methylated regions (DhMRs) in different regulatory kinases enriched with serine-threonine kinases. These serine-threonine kinases compromises MAPK14, RPSK6KA1, RIPK1, and PLK3 and were all previously identified as key-regulators in hepatocarcinogenesis and subject of study for chemotherapeutic interventions.


Subject(s)
5-Methylcytosine/analogs & derivatives , Gene Expression Regulation/drug effects , Genomics/methods , Oxidative Stress/drug effects , Protein Kinases/metabolism , tert-Butylhydroperoxide/toxicity , 5-Methylcytosine/toxicity , Animals , Gene Regulatory Networks/drug effects , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Metabolome , Microarray Analysis , Protein Kinases/genetics , RNA/genetics , RNA/isolation & purification
5.
Toxicology ; 393: 160-170, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29154799

ABSTRACT

Valproic acid (VPA) is a very potent anti-cancer and neuro-protective drug probably by its HDAC inhibiting properties, which may cause steatosis in the liver. The present study investigates the effect of repetitive VPA treatment of primary human hepatocytes (PHH) on whole genome gene expression-, DNA methylation-, and miRNA changes, using microarrays and integrated data analyses. PHH were exposed to a non-cytotoxic dose of VPA for 5days daily which induced lipid accumulation. Part of the PHH was left untreated for 3days for studying the persistence of 'omics' changes. VPA treatment appeared to inhibit the expression of the transcription factors HNF1A and ONECUT1. HNF1A interacted with 41 differentially expressed genes of which 12 were also differentially methylated. None of the genes present in this network were regulated by a DE-miR. The subnetwork of ONECUT1 consisted of 44 differentially expressed genes of which 15 were differentially methylated, and 3 were regulated by a DE-miR. A number of genes in the networks are involved in fatty acid metabolism, and may contribute to the development of steatosis by increasing oxidative stress thereby causing mitochondrial dysfunction, and by shifting metabolism of VPA towards ß-oxidation due to reduced glucuronidation. Part of the changes remained persistent after washing out of VPA, like PMAIP1 which is associated with cellular stress in liver of patients with NASH. The MMP2 gene showed the highest number of interactions with other persistently expressed genes, among which LCN2 which is a key modulator of lipid homeostasis. Furthermore, VPA modulated the expression and DNA methylation level of nuclear receptors and their target genes involved in the adverse outcome pathway of steatosis, thereby expanding our current knowledge of the pathway. In particular, VPA modulated PPARγ, and PPARα, AHR and CD36 on both the gene expression and the DNA methylation level, thereby inhibiting ß-oxidation and increasing uptake of fatty acid into the hepatocytes, respectively. Overall, our integrative data analyses identified novel genes modulated by VPA, which provide more insight into the mechanisms of repeated dose toxicity of VPA, leading to steatosis.


Subject(s)
Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Valproic Acid/toxicity , Adult , Cells, Cultured , DNA Methylation , Fatty Liver/genetics , Female , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Infant , Male , MicroRNAs/genetics , Middle Aged
6.
Chem Res Toxicol ; 30(10): 1847-1854, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28853863

ABSTRACT

Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis through mitochondrial dysfunction. The aim of this study is to further investigate VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human hepatocytes (PHHs) were exposed to an incubation concentration of VPA that was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered daily for 5 days, and this was followed by a 3 day washout (WO). Methylated DNA regions (DMRs) were identified by using the methylated DNA immunoprecipitation-sequencing (MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed be classified into oxidative stress- and steatosis-related pathways. In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by VPA treatment. Furthermore, we suggest that VPA induces a crosstalk between nDNA hypermethylation and mtDNA hypomethylation that plays a role in oxidative stress and steatosis development. Although most VPA-induced methylation patterns appeared reversible upon terminating VPA treatment, 31 nDNA DMRs (including 5 zinc finger protein genes) remained persistent after the WO period. Overall, we have shown that MeDIP-seq analysis is highly informative in disclosing novel mechanisms of VPA-induced toxicity in PHHs. Our results thus provide a prototype for the novel generation of interesting methylation biomarkers for repeated dose liver toxicity in vitro.


Subject(s)
Cell Nucleolus/drug effects , DNA Methylation/drug effects , DNA, Mitochondrial/drug effects , Hepatocytes/drug effects , Valproic Acid/pharmacology , Cell Nucleolus/metabolism , DNA, Mitochondrial/metabolism , Hepatocytes/metabolism , Humans , Structure-Activity Relationship , Tumor Cells, Cultured , Valproic Acid/administration & dosage
7.
Histopathology ; 70(3): 412-422, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27701763

ABSTRACT

AIMS: Currently pulmonary carcinoids are separated into typical and atypical based on mitotic count and presence of necrosis, according to the World Health Organization. At variance with gastroenteropancreatic neuroendocrine tumours, which are graded based on mitotic count and Ki-67 proliferative index, the use of Ki-67 for grading pulmonary carcinoids is still under debate. METHODS AND RESULTS: In this study we evaluated the prognostic impact of Ki-67 assessment in a multicentre cohort of 201 carcinoids [147 typical carcinoids (TCs) and 54 atypical carcinoids (ACs)] using manual analysis (2000 cells counted) and digital image analysis (in-house Leica Qwin program; ≥4500 cells counted). The Ki-67 proliferative index was correlated with overall survival by means of univariate analysis and in comparison to clinical data by means of multivariable analysis. The Ki-67 index was significantly higher in ACs than in TCs for both counting methods (P ≤ 2.7e-5 ). In addition, using cut-offs of 2.5% and 4% (manual counting) or 1% and 5% (digital analysis), the highest differences in overall survival were observed (P ≤ 0.0067). Nevertheless, histopathological classification into TCs and ACs showed an equally strong association with disease outcome, although Ki-67 had some additive value within TCs. Ki-67 index was not an independent predictor of survival in multivariable analysis. CONCLUSIONS: Our study demonstrates that, although Ki-67 is a strong prognostic factor for pulmonary carcinoids, its usefulness in addition to histopathology in prediction of prognosis is limited. None the less, it may have additional value, especially in cases that are difficult to classify, in combination with histopathology and other molecular markers.


Subject(s)
Carcinoid Tumor/mortality , Carcinoid Tumor/pathology , Ki-67 Antigen/analysis , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor/analysis , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mitotic Index , Prognosis , Proportional Hazards Models , ROC Curve , Retrospective Studies , World Health Organization , Young Adult
8.
Chem Res Toxicol ; 29(9): 1428-38, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27509014

ABSTRACT

In recent years, it has been shown that free radicals not only react directly with DNA but also regulate epigenetic processes such as DNA methylation, which may be relevant within the context of, for example, tumorigenesis. However, how these free radicals impact the epigenome remains unclear. We therefore investigated whether methyl and hydroxyl radicals, formed by tert-butyl hydroperoxide (TBH), change temporal DNA methylation patterns and how this interferes with genome-wide gene expression. At three time points, TBH-induced radicals in HepG2 cells were identified by electron spin resonance spectroscopy. Total 5-methylcytosine (5mC) levels were determined by liquid chromatography and tandem mass spectrometry and genome-wide changes in 5mC and gene expression by microarrays. Induced methylome changes rather represent an adaptive response to the oxidative stress-related reactions observed in the transcriptome. More specifically, we found that methyl radicals did not induce DNA methylation directly. An initial oxidative and alkylating stress-related response of the transcriptome during the early phase of TBH treatment was followed by an epigenetic response associated with cell survival signaling. Also, we identified genes of which the expression seems directly regulated by DNA methylation. This work suggests an important role of the methylome in counter-regulating primary oxidative and alkylating stress responses in the transcriptome to restore normal cell function. Altogether, the methylome may play an important role in counter-regulating primary oxidative and alkylating stress responses in the transcriptome presumably to restore normal cell function.


Subject(s)
DNA Methylation , Oxidative Stress/genetics , Stress, Physiological/genetics , Transcriptome/genetics , Alkylation , Chromatography, Liquid , Free Radicals/chemistry , Hep G2 Cells , Humans , Spectrometry, Mass, Electrospray Ionization
9.
Toxicology ; 350-352: 31-9, 2016 03 28.
Article in English | MEDLINE | ID: mdl-27153756

ABSTRACT

Chronic exposure to aflatoxin B1 (AFB1) has, in certain regions in the world, been strongly associated with hepatocellular carcinoma (HCC) development. AFB1 is a very potent hepatotoxic and carcinogenic mycotoxin which is frequently reported as a food contaminant. Epigenetic modifications provoked by environmental exposures, such as AFB1, may create a persistent epigenetic footprint. Deregulation of epigenetic mechanisms has actually been reported in HCC patients following AFB1 exposure; however, no attempts have yet been made to investigate early effects on the epigenome level which may be persistent on longer term, thereby possibly initiating carcinogenic events. In this study, we aim to identify methyl DNA-mRNA-interactions representative for a persistent epigenetic footprint associated with the early onset of AFB1-induced HCC. For this, primary human hepatocytes were exposed to 0.3µM of AFB1 for 5 days. Persistent epigenetic effects were measured 3 days after terminating the carcinogenic exposure. Whole genome DNA methylation changes and whole genome transcriptomic analysis were analyzed applying microarray technologies, and cross-omics interactions were evaluated. Upon combining transcriptomics data with results on DNA methylation, a range of persistent hyper- and hypo-methylated genes was identified which also appeared affected on the transcriptome level. For six of the hypo-methylated and up-regulated genes, namely TXNRD1, PCNA, CCNK, DIAPH3, RAB27A and HIST1H2BF, a clear role in carcinogenic events could be identified. This study is the first to report on a carcinogen-induced persistent impact on the epigenetic footprint in relation with the transcriptome which could be indicative for the early onset of AFB1-related development of HCC.


Subject(s)
Aflatoxin B1/toxicity , Carcinogens/toxicity , Carcinoma, Hepatocellular/chemically induced , Hepatocytes/drug effects , Liver Neoplasms/chemically induced , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , DNA Methylation/drug effects , Epigenesis, Genetic , Epigenomics , Gene Expression Profiling , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Time Factors
10.
Arch Toxicol ; 90(5): 1103-15, 2016 May.
Article in English | MEDLINE | ID: mdl-26104854

ABSTRACT

Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.


Subject(s)
Acetaminophen/metabolism , Acetaminophen/toxicity , Analgesics, Non-Narcotic/metabolism , Analgesics, Non-Narcotic/toxicity , Chemical and Drug Induced Liver Injury/genetics , Hepatocytes/drug effects , Activation, Metabolic , Cells, Cultured , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Genetic Markers , Genetic Predisposition to Disease , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Metabolomics , Phenotype , Primary Cell Culture
11.
Arch Toxicol ; 89(11): 1959-69, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25199682

ABSTRACT

Arsenic is an established human carcinogen, but the mechanisms through which it contributes to for instance lung cancer development are still unclear. As arsenic is methylated during its metabolism, it may interfere with the DNA methylation process, and is therefore considered to be an epigenetic carcinogen. In the present study, we hypothesize that arsenic is able to induce DNA methylation changes, which lead to changes in specific gene expression, in pathways associated with lung cancer promotion and progression. A549 human adenocarcinoma lung cells were exposed to a low (0.08 µM), intermediate (0.4 µM) and high (2 µM) concentration of sodium arsenite for 1, 2 and 8 weeks. DNA was isolated for whole-genome DNA methylation analyses using NimbleGen 2.1 M deluxe promoter arrays. In addition, RNA was isolated for whole-genome transcriptomic analysis using Affymetrix microarrays. Arsenic modulated DNA methylation and expression levels of hundreds of genes in a dose-dependent and time-dependent manner. By combining whole-genome DNA methylation and gene expression data with possibly involved transcription factors, a large molecular interaction network was created based on transcription factor-target gene pairs, consisting of 216 genes. A tumor protein p53 (TP53) subnetwork was identified, showing the interactions of TP53 with other genes affected by arsenic. Furthermore, multiple other new genes were discovered showing altered DNA methylation and gene expression. In particular, arsenic modulated genes which function as transcription factor, thereby affecting target genes which are known to play a role in lung cancer promotion and progression.


Subject(s)
Adenocarcinoma/chemically induced , Arsenites/toxicity , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Sodium Compounds/toxicity , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Arsenites/administration & dosage , Carcinogens/administration & dosage , Cell Line, Tumor , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Sodium Compounds/administration & dosage , Time Factors , Tumor Suppressor Protein p53/genetics
12.
Toxicol Sci ; 143(2): 268-76, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25359176

ABSTRACT

Drug-induced liver injury (DILI) is a leading cause of acute liver failure and the major reason for withdrawal of drugs from the market. Preclinical evaluation of drug candidates has failed to detect about 40% of potentially hepatotoxic compounds in humans. At the onset of liver injury in humans, currently used biomarkers have difficulty differentiating severe DILI from mild, and/or predict the outcome of injury for individual subjects. Therefore, new biomarker approaches for predicting and diagnosing DILI in humans are urgently needed. Recently, circulating microRNAs (miRNAs) such as miR-122 and miR-192 have emerged as promising biomarkers of liver injury in preclinical species and in DILI patients. In this study, we focused on examining global circulating miRNA profiles in serum samples from subjects with liver injury caused by accidental acetaminophen (APAP) overdose. Upon applying next generation high-throughput sequencing of small RNA libraries, we identified 36 miRNAs, including 3 novel miRNA-like small nuclear RNAs, which were enriched in the serum of APAP overdosed subjects. The set comprised miRNAs that are functionally associated with liver-specific biological processes and relevant to APAP toxic mechanisms. Although more patients need to be investigated, our study suggests that profiles of circulating miRNAs in human serum might provide additional biomarker candidates and possibly mechanistic information relevant to liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury/blood , High-Throughput Screening Assays , MicroRNAs/blood , Acetaminophen/administration & dosage , Acetaminophen/toxicity , Adult , Biomarkers/blood , Case-Control Studies , Chemical and Drug Induced Liver Injury/etiology , Drug Overdose/complications , Female , Humans , Male , Organ Specificity , Predictive Value of Tests , Reproducibility of Results , Tissue Distribution
13.
Toxicology ; 323: 61-9, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-24949552

ABSTRACT

Large differences in toxicity responses occur within the human population. In this study we evaluate whether interindividual variation in baseline enzyme activity (EA)/gene expression (GE) levels in liver predispose for the variation in toxicity responses by assessing dose-response relationships for several prototypical hepatotoxicants. Baseline levels of cytochrome-P450 (CYP) GE/EA were measured in precision-cut human liver slices. Slices (n=4-5/compound) were exposed to a dose-range of acetaminophen, aflatoxin B1, benzo(α) pyrene or 2-nitrofluorene. Interindividual variation in induced genotoxicity (COMET-assay and CDKN1A/p21 GE) and cytotoxicity (lactate dehydrogenase-leakage), combined with NQO1- and GSTM1-induced GE-responses for oxidative stress and GE-responses of several CYPs was evaluated. The benchmark dose-approach was applied as a tool to model exposure responses on an individual level. Variation in baseline CYP levels, both GE and EA, can explain variation in compound exposure-responses on an individual level. Network analyses enable the definition of key parameters influencing interindividual variation after compound exposure. For 2-nitrofluorene, this analysis suggests involvement of CYP1B1 in the metabolism of this compound, which represents a novel finding. In this study, GSTM1 which is known to be highly polymorphic within the human population, but so far could not be linked to toxicity in acetaminophen-poisoned patients, is suggested to cause interindividual variability in acetaminophen-metabolism, dependent on the individual's gene expression-responses of CYP-enzymes. This study demonstrates that using interindividual variation within network modelling provides a source for the definition of essential and even new parameters involved in compound-related metabolism. This information might enable ways to make more quantitative estimates of human risks.


Subject(s)
Liver/drug effects , Xenobiotics/toxicity , Acetaminophen/toxicity , Aflatoxin B1/toxicity , Benzo(a)pyrene/toxicity , Cell Survival/drug effects , Comet Assay , Cytochrome P-450 Enzyme System/genetics , DNA Damage , Fluorenes/toxicity , Gene Expression , Glutathione Transferase/genetics , Humans , L-Lactate Dehydrogenase/metabolism , Liver/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
14.
Int J Cancer ; 132(8): 1781-9, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-22987500

ABSTRACT

Tonsillar squamous cell carcinoma (TSCC) is frequently associated with human papillomavirus (HPV) and chromosome instability. Data from cellular model systems are, however, controversial concerning a relation between HPV and chromosome instability development. Here we studied this association in 77 primary TSCC with known clinical outcome and cell cycle protein expression profiles. Thirty-two tumors (42%) showed HPV16-integration. All 77 cases were analyzed by fluorescence in situ hybridization using chromosome 1- and 7-specific centromere DNA probes to detect chromosome instability, indicated by the presence of chromosome imbalances and/or polyploidization for these chromosomes. In addition, eight HPV-positive dysplasias, seven of which were adjacent to a carcinoma, were analyzed. Disomy for chromosome 1 and 7 was present in 29 out of 77 TSCC (38%), of which 19 were HPV16-positive (p = 0.002). Aneusomy was observed in the remaining 48 TSCC, of which 13 were HPV-positive. Aneusomies correlated significantly with tobacco- and alcohol consumption (p = 0.001 and p = 0.016, respectively) and a higher T-stage (p = 0.018). Both HPV-positivity and chromosome disomy were significantly associated with a favorable disease-free survival (p = 0.001 and p = 0.025, respectively). Particularly in the HPV16-positive group chromosome instability is a very strong indicator for an unfavorable prognosis (p = 0.032). In the dysplasias an identical HPV and chromosome copy number status was identified as in the adjacent tumors. We conclude that HPV-positive TSCC and their precursor lesions are more often genetically stable than HPV-negative lesions and that these tumors are associated with a favorable prognosis. Chromosome instability is an indicator for unfavorable prognosis, particularly in the HPV-positive patient group.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromosomal Instability , Human papillomavirus 16/genetics , Tonsillar Neoplasms/genetics , Virus Integration , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , DNA Probes , Humans , In Situ Hybridization, Fluorescence , Prognosis , Tonsillar Neoplasms/pathology , Tonsillar Neoplasms/virology
15.
Mutagenesis ; 27(6): 645-52, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22914676

ABSTRACT

The γH2AX assay has recently been suggested as a new in vitro assay for detecting genotoxic (GTX) properties of chemicals. This assay is based on the phosphorylation of H2AX histone in response to DNA damage [i.e. induction of double-strand breaks (DSBs)]. Quantification of γH2AX foci using flow cytometry can rapidly detect DNA damage induced by chemicals that cause DNA DSBs. Up to now, only few compounds have been tested with this assay. The main goal of this study was to compare the performance of this automated γH2AX assay with that of standard in vitro genotoxicity assays in predicting in vivo genotoxicity. HepG2 cells were exposed to 64 selected compounds with known GTX properties and subsequently analysed for induction of γH2AX foci. The results of this assay were compared with public data from standard in vitro genotoxicity tests. Accuracy, sensitivity and specificity in predicting in vivo genotoxicity, using the γH2AX assay alone or in combinations with conventional assays, were calculated. Both the γH2AX assay and the bacterial mutagenicity test (Ames) were highly specific for in vivo GTX, whereas chromosomal aberration/micronucleus test (CA/MN) resulted in highest sensitivity. The currently widely used in vitro genotoxicity test battery-Ames test, mouse lymphoma assay (MLA) and CA/MN test-resulted in low accuracy (55-65%) to predict in vivo genotoxicity. Interestingly, the inclusion of γH2AX assay in the standard battery, instead of MLA assay, resulted in higher accuracy (62-70%) compared with other combinations. Advantage of the γH2AX assay in HepG2 cells is its high sensitivity to detect DNA-reactive GTX compounds, although the reduced sensitivity for compounds that require metabolic activation needs to be improved. In conclusion, the automated γH2AX assay can be a useful, fast and cost-effective human cell-based tool for early screening of compounds for in vivo genotoxicity.


Subject(s)
DNA Damage , Histones/metabolism , Mutagenicity Tests/methods , Carcinogens/toxicity , Chromosome Aberrations , Dose-Response Relationship, Drug , Flow Cytometry , Hep G2 Cells , Histones/genetics , Humans , Phosphorylation , Sensitivity and Specificity
16.
Toxicol Appl Pharmacol ; 259(3): 320-8, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22285215

ABSTRACT

Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2g dose) and oxidative stress responses (4g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Gene Expression Regulation/drug effects , MicroRNAs/metabolism , Oxidative Stress/drug effects , Acetaminophen/administration & dosage , Acetaminophen/metabolism , Adult , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/metabolism , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Genome, Human , Humans , Male , Middle Aged , Oxidation-Reduction , RNA, Messenger/metabolism , Transcriptome
17.
Toxicol Sci ; 125(2): 430-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22045034

ABSTRACT

Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.


Subject(s)
Embryonic Stem Cells/drug effects , Gene Expression Profiling , Neural Crest/drug effects , Neurogenesis/drug effects , Toxicity Tests/methods , Triazoles/toxicity , Valproic Acid/toxicity , Animal Testing Alternatives , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Gene Expression Regulation, Developmental/drug effects , Mice , Neural Crest/metabolism , Neural Crest/pathology , Neurites/drug effects , Neurites/pathology , Neurogenesis/genetics , Time Factors
18.
Mutat Res ; 736(1-2): 75-81, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22100520

ABSTRACT

Chronic inflammation is characterized by the influx of neutrophils and is associated with an increased production of reactive oxygen species that can damage DNA. Oxidative DNA damage is generally thought to be involved in the increased risk of cancer in inflamed tissues. We previously demonstrated that activated neutrophil mediated oxidative stress results in a reduction in nucleotide excision repair (NER) capacity, which could further enhance mutagenesis. Inflammation and oxidative stress are critical factors in the progression of nonalcoholic fatty liver disease that is linked with enhanced liver cancer risk. In this report, we therefore evaluated the role of neutrophils and the associated oxidative stress in damage recognition and DNA repair in steatotic livers of 35 severely obese subjects with either nonalcoholic steatohepatitis (NASH) (n=17) or steatosis alone (n=18). The neutrophilic influx in liver was assessed by myeloperoxidase (MPO) staining and the amount of oxidative DNA damage by measuring M(1)dG adducts. No differences in M(1)dG adduct levels were observed between patients with or without NASH and also not between individuals with high or low MPO immunoreactivity. However, we found that high expression of MPO in the liver, irrespective of disease status, reduced the damage recognition capacity as determined by staining for histone 2AX phosphorylation (γH2AX). This reduction in γH2AX formation in individuals with high MPO immunoreactivity was paralleled by a significant decrease in NER capacity as assessed by a functional repair assay, and was not related to cell proliferation. Thus, the observed reduction in NER capacity upon hepatic inflammation is associated with and may be a consequence of reduced damage recognition. These findings suggest a novel mechanism of liver cancer development in patients with nonalcoholic fatty liver disease.


Subject(s)
DNA Repair , Peroxidase/metabolism , Adult , DNA Damage , Fatty Liver/genetics , Female , Histones/metabolism , Humans , Inflammation/metabolism , Male , Middle Aged , Neutrophils/metabolism , Obesity/complications , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
19.
Am J Pathol ; 179(3): 1129-37, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21763262

ABSTRACT

Carcinoids are slow-growing neuroendocrine tumors that, in the lung, can be subclassified as typical (TC) or atypical (AC). To identify genetic alterations that improve the prediction of prognosis, we investigated 34 carcinoid tumors of the lung (18 TCs, 15 ACs, and 1 unclassified) by using array comparative genomic hybridization (array CGH) on 3700 genomic bacterial artificial chromosome arrays (resolution ≤1 Mb). When comparing ACs with TCs, the data revealed: i) a significant difference in the average number of chromosome arms altered (9.6 versus 4.2, respectively; P = 0.036), with one subgroup of five ACs having more than 15 chromosome arms altered; ii) chromosomal changes in 30% of ACs or more with additions at 9q (≥1 Mb) and losses at 1p, 2q, 10q, and 11q; and iii) 11q deletions in 8 of 15 ACs versus 1 of 18 TCs (P = 0.004), which was confirmed via fluorescence in situ hybridization. The four critical regions of interest in 45% ACs or more comprised 11q14.1, 11q22.1-q22.3, 11q22.3-q23.2, and 11q24.2-q25, all telomeric of MEN1 at 11q13. Results were correlated with patient clinical data and long-term follow-up. Thus, there is a strong association of 11q22.3-q25 loss with poorer prognosis, alone or in combination with absence of 9q34.11 alterations (P = 0.0022 and P = 0.00026, respectively).


Subject(s)
Carcinoid Tumor/genetics , Chromosomes, Human, Pair 11/genetics , Gene Deletion , Lung Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoid Tumor/mortality , Diploidy , Female , Humans , Lung Neoplasms/mortality , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Young Adult
20.
Toxicol Sci ; 122(2): 437-47, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21613230

ABSTRACT

Current globally harmonized Organisation for Economic Co-operation and Development (OECD) animal test guidelines for developmental toxicity require high numbers of experimental animals. To reduce animal use in this field, alternative developmental toxicity assays are highly desirable. We previously developed a dynamic in vitro model for screening effects of possible neurodevelopmental toxicants, using neural cell differentiation of pluripotent murine embryonic stem cells. To further mechanistically characterize the mouse neural embryonic stem cell test (ESTn) and to improve detection of possible neurodevelopmental toxicants, gene expression patterns were studied describing neural cell differentiation over time, as well as the impact on gene expression of exposure to the well-known neurotoxicant methylmercury (MeHg). A transcriptomics study was performed to examine whole-genome expression changes during the first 7 days of the cell differentiation protocol. Specific gene clusters were identified and enrichment analysis of Gene Ontology (GO) terms and gene sets derived from literature was performed using DAVID and T-profiler. Over time, a decrease of blastocyst and trophectoderm GO terms was observed, which included well-characterized pluripotency genes. Furthermore, an increase in the range of neural development-related GO terms, such as neuron differentiation and the wnt pathway, was observed. Analysis of gene expression using principle component analysis showed a time-dependent track in untreated cells, describing the process of neural differentiation. Furthermore, MeHg was shown to induce deviation from the predefined differentiation track. The compound inhibited general development GO terms and induced neural GO terms over time. This system appears promising for studying compound effects on neural differentiation in a mechanistic approach.


Subject(s)
Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Gene Expression Profiling/methods , Methylmercury Compounds/toxicity , Neurons/cytology , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Mice , Neurons/drug effects , RNA/isolation & purification , Toxicity Tests/methods , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...