Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(7): e2648, 2022 10.
Article in English | MEDLINE | ID: mdl-35535971

ABSTRACT

Understanding factors that influence animal behavior is central to ecology. Basic principles of animal ecology imply that individuals should seek to maximize survival and reproduction, which means carefully weighing risk against reward. Decisions become increasingly complex and constrained, however, when risk is spatiotemporally variable. We advance a growing body of work in predator-prey behavior by evaluating novel questions where a prey species is confronted with multiple predators and a potential competitor. We tested how fine-scale behavior of female mule deer (Odocoileus hemionus) during the reproductive season shifted depending upon spatial and temporal variation in risk from predators and a potential competitor. We expected female deer to avoid areas of high risk when movement activity of predators and a competitor were high. We used GPS data collected from 76 adult female mule deer, 35 adult female elk, 33 adult coyotes, and six adult mountain lions. Counter to our expectations, female deer exhibited selection for multiple risk factors, however, selection for risk was dampened by the exposure to risk within home ranges of female deer, producing a functional response in habitat selection. Furthermore, temporal variation in movement activity of predators and elk across the diel cycle did not result in a shift in movement activity by female deer. Instead, the average level of risk within their home range was the predominant factor modulating the response to risk by female deer. Our results counter prevailing hypotheses of how large herbivores navigate risky landscapes and emphasize the importance of accounting for the local environment when identifying effects of risk on animal behavior. Moreover, our findings highlight additional behavioral mechanisms used by large herbivores to mitigate multiple sources of predation and potential competitive interactions.


Subject(s)
Coyotes , Deer , Animals , Deer/physiology , Ecosystem , Equidae , Female , Herbivory , Predatory Behavior
2.
Ecol Evol ; 12(2): e8641, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35228863

ABSTRACT

Successfully perceiving risk and reward is fundamental to the fitness of an animal, and can be achieved through a variety of perception tactics. For example, mesopredators may "directly" perceive risk by visually observing apex predators, or may "indirectly" perceive risk by observing habitats used by predators. Direct assessments should more accurately characterize the arrangement of risk and reward; however, indirect assessments are used more frequently in studies concerning the response of GPS-marked animals to spatiotemporally variable sources of risk and reward. We investigated the response of a mesopredator to the presence of risk and reward created by an apex predator, where risk and reward likely vary in relative perceptibility (i.e., degree of being perceptible). First, we tested whether coyotes (Canis latrans) use direct or indirect assessments to navigate the presence of mountain lions (Puma concolor; risk) and kills made by mountain lions (reward) in an area where coyotes were a common prey item for mountain lions. Second, we assessed the behavioral response of coyotes to direct encounters with mountain lions. Third, we evaluated spatiotemporal use of carrion by coyotes at kills made by mountain lions. Indirect assessments generally outperformed direct assessments when integrating analyses into a unified framework; nevertheless, our ability to detect direct perception in navigating to mountain lion kills was likely restricted by scale and sampling limitations (e.g., collar fix rates, unsampled kill sites). Rather than responding to the risk of direct encounters with mountain lions, coyotes facilitated encounters by increasing their movement rate, and engaged in risky behavior by scavenging at mountain lion kills. Coyotes appear to mitigate risk by using indirect perception to avoid mountain lions. Our predator-predator interactions and insights are nuanced and counter to the conventional predator-prey systems that have generated much of the predation risk literature.

3.
Ecol Evol ; 5(18): 3869-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26445648

ABSTRACT

A variety of methods are commonly used to quantify animal home ranges using location data acquired with telemetry. High-volume location data from global positioning system (GPS) technology provide researchers the opportunity to identify various intensities of use within home ranges, typically quantified through utilization distributions (UDs). However, the wide range of variability evident within UDs constructed with modern home range estimators is often overlooked or ignored during home range comparisons, and challenges may arise when summarizing distributional shifts among multiple UDs. We describe an approach to gain additional insight into home range changes by comparing UDs across isopleths and summarizing comparisons into meaningful results. To demonstrate the efficacy of this approach, we used GPS location data from 16 bighorn sheep (Ovis canadensis) to identify distributional changes before and after habitat alterations, and we discuss advantages in its application when comparing home range size, overlap, and joint-space use. We found a consistent increase in bighorn sheep home range size when measured across home range levels, but that home range overlap and similarity values decreased when examined at increasing core levels. Our results highlight the benefit of conducting multiscale assessments when comparing distributions, and we encourage researchers to expand comparative home range analyses to gain a more comprehensive evaluation of distributional changes and to evaluate comparisons across home range levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...