Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Autoimmun ; 147: 103263, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851089

ABSTRACT

RATIONALE: In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS: Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS: RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11ß-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11ß-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11ß-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11ß-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS: This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.

2.
Am J Physiol Heart Circ Physiol ; 325(4): H790-H805, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539447

ABSTRACT

Fetal growth throughout pregnancy relies on delivery of an increasing volume of maternal blood to the placenta. To facilitate this, the uterine vascular network adapts structurally and functionally, resulting in wider blood vessels with decreased flow-mediated reactivity. Impaired remodeling of the rate-limiting uterine radial arteries has been associated with fetal growth restriction. However, the mechanisms underlying normal or pathological radial artery remodeling are poorly understood. Here, we used pressure myography to determine the roles of hemodynamic (resistance, flow rate, shear stress) and paracrine [ß-estradiol, progesterone, placental growth factor (PlGF), vascular endothelial growth factor] factors on rat radial artery reactivity. We show that ß-estradiol, progesterone, and PlGF attenuate flow-mediated constriction of radial arteries from nonpregnant rats, allowing them to withstand higher flow rates in a similar manner to pregnant vessels. This effect was partly mediated by nitric oxide (NO) production. To better understand how the combination of paracrine factors and shear stress may impact human radial artery remodeling in the first half of gestation, computational models of uterine hemodynamics, incorporating physiological parameters for trophoblast plugging and spiral artery remodeling, were used to predict shear stress in the upstream radial arteries across the first half of pregnancy. Human microvascular endothelial cells subjected to these predicted shear stresses demonstrated higher NO production when paracrine factors were added. This suggests that synergistic effects of paracrine and hemodynamic factors induce uterine vascular remodeling and that alterations in this balance could impair radial artery adaptation, limiting blood flow to the placenta and negatively impacting fetal growth.NEW & NOTEWORTHY Placenta-specific paracrine factors ß-estradiol, progesterone, and placental growth factor attenuate flow-mediated constriction of the rate-limiting uterine radial arteries, enabling higher flow rates in pregnancy. These paracrine factors induce their actions in part via nitric oxide mediated mechanisms. A synergistic combination of paracrine factors and shear stress is likely necessary to produce sufficient levels of nitric oxide during early human pregnancy to trigger adequate uterine vascular adaptation.


Subject(s)
Radial Artery , Vascular Endothelial Growth Factor A , Pregnancy , Humans , Rats , Female , Animals , Placenta Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Progesterone/pharmacology , Endothelial Cells , Nitric Oxide/metabolism , Hemodynamics , Uterine Artery/metabolism , Estradiol/pharmacology , Estradiol/metabolism
3.
Am J Physiol Heart Circ Physiol ; 324(3): H318-H329, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36607796

ABSTRACT

The lung is extremely sensitive to interstitial fluid balance, yet the role of pulmonary lymphatics in lung fluid homeostasis and its interaction with cardiovascular pressures is poorly understood. In health, there is a fine balance between fluid extravasated from the pulmonary capillaries into the interstitium and the return of fluid to the circulation via the lymphatic vessels. This balance is maintained by an extremely interdependent system governed by pressures in the fluids (air and blood) and tissue (interstitium), lung motion during breathing, and the permeability of the tissues. Chronic elevation in left atrial pressure (LAP) due to left heart disease increases the capillary blood pressure. The consequent fluid accumulation in the delicate lung tissue increases its weight, decreases its compliance, and impairs gas exchange. This interdependent system is difficult, if not impossible, to study experimentally. Computational modeling provides a unique perspective to analyze fluid movement in the cardiopulmonary vasculature in health and disease. We have developed an initial in silico model of pulmonary lymphatic function using an anatomically structured model to represent ventilation and perfusion and underlying biophysical laws governing fluid transfer at the interstitium. This novel model was tested against increased LAP and noncardiogenic effects (increased permeability). The model returned physiologically reasonable values for all applications, predicting pulmonary edema when LAP reached 25 mmHg and with increased permeability.NEW & NOTEWORTHY This model presents a novel approach to understanding the interaction between cardiac dysfunction and pulmonary lymphatic function, using anatomically structured models and biophysical equations to estimate regional variation in fluid transport from blood to interstitial and lymphatic flux. This fluid transport model brings together advanced models of ventilation, perfusion, and lung mechanics to produce a detailed model of fluid transport in health and various altered pathological conditions.


Subject(s)
Cardiovascular System , Lymphatic Vessels , Pulmonary Edema , Humans , Lung/blood supply , Water-Electrolyte Balance , Lymphatic System/physiology
4.
Placenta ; 114: 8-13, 2021 10.
Article in English | MEDLINE | ID: mdl-34418753

ABSTRACT

Adequate development of the feto-placental circulation is critical for placental exchange function and healthy fetal growth. Understanding the structure of this circulation and how it informs fetal outcomes is important both in the human placenta, and the rodent, a purported comparative experimental model. Vascular casting and micro-CT imaging approaches enable detailed quantification of the complex vascular relationships in the feto-circulation, and provide detailed data to parameterise in silico models. Here, to assist researchers to apply these technically challenging methods we provide detailed approaches to cast and image; 1) human placentas at the cotyledon-level, and 2) whole rodent placentas.


Subject(s)
Fetus/diagnostic imaging , Placenta/diagnostic imaging , Placental Circulation , Animals , Female , Fetus/blood supply , Humans , Imaging, Three-Dimensional , Mice , Placenta/blood supply , Pregnancy , Rats
5.
Morphologie ; 103(343): 131-138, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31570307

ABSTRACT

The understanding or prediction of specific functions of the lung can be made using compact models that have identifiable parameters and that are custom designed to the problem of interest. However, when structure contributes to function - as is the case with most lung pathologies - structure-based, biophysical models become essential. Here we describe the application of structure-based models within the lung Physiome framework to identifying and explaining patient risk in 12patients diagnosed with acute pulmonary embolism. The model integrates perfusion, ventilation, and gas exchange to predict arterial blood gases and pulmonary artery pressure in individual patient models in response to patient-specific blood clot distribution, with full or partial arterial occlusion. The necessity for a patient-specific approach with biophysical models that account for scale-specific structure and function is demonstrated.


Subject(s)
Lung/physiology , Models, Anatomic , Models, Biological , Biophysical Phenomena , Humans , Lung/anatomy & histology , User-Computer Interface
6.
J Biomech Eng ; 141(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31233096

ABSTRACT

Distribution of lung tissue within the chest cavity is a key contributor to delivery of both blood and air to the gas exchange regions of the lung. This distribution is multifactorial with influences from parenchyma, gravity, and level of inflation. We hypothesize that the manner in which lung inflates, for example, the primarily diaphragmatic nature of normal breathing, is an important contributor to regional lung tissue distribution. To investigate this hypothesis, we present an organ-level model of lung tissue mechanics, which incorporates pleural cavity change due to change in lung volume or posture. We quantify the changes using shape and density metrics in ten healthy subjects scanned supine at end-inspiratory and end-expiratory volumes and ten subjects scanned at both supine and prone end-inspiratory volumes. Comparing end-expiratory to end-inspiratory volume, we see primarily a change in the cranial-caudal dimension of the lung, reflective of movement of diaphragm. In the diaphragmatic region, there is greater regional lung expansion than in the cranial aspect, which is restricted by the chest wall. When moving from supine to prone, a restriction of lung was observed anteriorly, resulting in a generally reduced lung volume and a redistribution of air volume posteriorly. In general, we see the highest in lung tissue density heterogeneity in regions of the lung that are most inflated. Using our computational model, we quantify the impact of pleural cavity shape change on regional lung distribution and predict the impact on regional elastic recoil pressure.

7.
Clin Exp Immunol ; 193(1): 24-36, 2018 07.
Article in English | MEDLINE | ID: mdl-29729109

ABSTRACT

All organisms are exposed constantly to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. While the innate immune system is the front line of response to each stimulant, it has been considered traditionally to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of 'innate immune memory' has been known for nearly a century, and is accepted among myeloid biologists. In recent years other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting that innate immune memory is a trait common to several cell types. During the last 30 years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if under-appreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory.


Subject(s)
Endothelial Cells/immunology , Fibroblasts/immunology , Immunity, Innate/immunology , Immunologic Memory/immunology , Stromal Cells/immunology , Humans , Inflammation/immunology , Inflammation/pathology
8.
J Appl Physiol (1985) ; 125(2): 328-339, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29470150

ABSTRACT

Altered parenchymal microstructure and complexity have been observed in older age. How to distinguish between healthy, expected changes and early signs of pathology remains poorly understood. An objective quantitative analysis of computed tomography imaging was conducted to compare mean lung density, tissue density distributions, and tissue heterogeneity in 16 subjects, 8 aged >60 yr who were gender and body mass index matched with 8 subjects aged <30 yr. Subjects had never been smokers, with no prior respiratory disease, and no radiologically identified abnormalities on computed tomography. Volume-controlled breath hold imaging acquired at 80% vital capacity (end inspiration) and 55% vital capacity (end expiration) were used for analysis. Mean lung density was not different between the age groups at end inspiration ( P = 0.806) but was larger in the younger group at end expiration (0.26 ± 0.033 vs. 0.22 ± 0.026, P = 0.008), as is expected due to increased air trapping in the older population. However, gravitational gradients of tissue density did not differ with age; the only difference in distribution of tissue density between the two age groups was a lower density in the apices of the older group at end expiration. The heterogeneity of the lung tissue assessed using two metrics showed significant differences between end inspiration and end expiration, no dependence on age, and a significant relationship with body mass index at both lung volumes when heterogeneity was calculated using quadtree decomposition but only at end expiration when using a fractal dimension. NEW & NOTEWORTHY Changes to lung tissue heterogeneity can be a normal part of aging but can also be an early indicator of disease. We use novel techniques, which have previously not been used on thoracic computed tomography imaging, to quantify lung tissue heterogeneity in young and old healthy subjects. Our results show no dependence on age but a significant correlation with body mass index.


Subject(s)
Lung/physiology , Adult , Aged , Body Mass Index , Breath Holding , Female , Humans , Male , Respiration , Tomography, X-Ray Computed/methods , Vital Capacity/physiology , Young Adult
9.
J Mol Biol ; 430(5): 722-736, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29291391

ABSTRACT

The zinc-finger protein tristetraprolin (TTP) binds to AU-rich elements present in the 3' untranslated regions of transcripts that mainly encode proteins of the inflammatory response. TTP-bound mRNAs are targeted for destruction via recruitment of the eight-subunit deadenylase complex "carbon catabolite repressor protein 4 (CCR4)-negative on TATA-less (NOT)," which catalyzes the removal of mRNA poly-(A) tails, the first obligatory step in mRNA decay. Here we show that a novel interaction between TTP and the CCR4-NOT subunit, CNOT9, is required for recruitment of the deadenylase complex. In addition to CNOT1, CNOT9 is now included in the identified CCR4-NOT subunits shown to interact with TTP. We find that both the N- and C-terminal domains of TTP are involved in an interaction with CNOT9. Through a combination of SPOT peptide array, site-directed mutagenesis, and bio-layer interferometry, we identified several conserved tryptophan residues in TTP that serve as major sites of interaction with two tryptophan-binding pockets of CNOT9, previously found to interact with another modulator GW182. We further demonstrate that these interactions are also required for recruitment of the CCR4-NOT complex and TTP-directed decay of an mRNA containing an AU-rich element in its 3'-untranslated region. Together the results reveal new molecular details for the TTP-CNOT interaction that shape an emerging mechanism whereby TTP targets inflammatory mRNAs for deadenylation and decay.


Subject(s)
Transcription Factors/metabolism , Tristetraprolin/metabolism , Tryptophan/metabolism , 3' Untranslated Regions , Autoantigens/genetics , Autoantigens/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , HeLa Cells , Humans , Mutagenesis, Site-Directed , Protein Interaction Domains and Motifs , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, CCR4/genetics , Receptors, CCR4/metabolism , Transcription Factors/genetics , Tristetraprolin/genetics , Tryptophan/genetics
10.
Int J Biochem Cell Biol ; 94: 6-9, 2018 01.
Article in English | MEDLINE | ID: mdl-29128684

ABSTRACT

Tristetraprolin (TTP) is an RNA-destabilizing protein that exerts profound anti-inflammatory effects by inhibiting the expression of tumour necrosis factor and many other inflammatory mediators. The mitogen-activated protein kinase (MAPK) p38 signaling pathway controls the strength and duration of inflammatory responses by regulating both the expression and function of TTP. The kinase MK2 (MAPK activated kinase 2) is activated by MAPK p38, and in turn phosphorylates TTP at two critical serine residues. One consequence of these phosphorylations is the protection of TTP from proteasome-mediated degradation. Another consequence is the loss of mRNA destabilizing activity. The control of TTP expression and function by the MAPK p38 pathway provides an elegant mechanism for coupling the on and off phases of inflammatory responses, and dictating the precise kinetics of expression of individual inflammatory mediators.


Subject(s)
Gene Expression Regulation , Immune System/metabolism , Inflammation/metabolism , MAP Kinase Signaling System , Models, Immunological , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Enzyme Activation , Humans , Immune System/enzymology , Inflammation/enzymology , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Proteolysis
11.
J Appl Physiol (1985) ; 124(1): 23-33, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29051337

ABSTRACT

Gravity and matched airway/vascular tree geometries are both hypothesized to be key contributors to ventilation-perfusion (V̇/Q̇) matching in the lung, but their relative contributions are challenging to quantify experimentally. We used a structure-based model to conduct an analysis of the relative contributions of tissue deformation (the "Slinky" effect), other gravitational mechanisms (weight of blood and gravitational gradient in tissue elastic recoil), and matched airway and arterial tree geometry to V̇/Q̇ matching and therefore to total lung oxygen exchange. Our results showed that the heterogeneity in V̇ and Q̇ were lowest and the correlation between V̇ and Q̇ was highest when the only mechanism for V̇/Q̇ matching was either tissue deformation or matched geometry. Heterogeneity in V̇ and Q̇ was highest and their correlation was poorest when all mechanisms were active (that is, at baseline). Eliminating the contribution of matched geometry did not change the correlation between V̇ and Q̇ at baseline. Despite the much larger heterogeneities in V̇ and Q̇ at baseline, the contribution of in-common (to V̇ and Q̇) gravitational mechanisms provided sufficient compensatory V̇/Q̇ matching to minimize the impact on oxygen transfer. In summary, this model predicts that during supine normal breathing under gravitational loading, passive V̇/Q̇ matching is predominantly determined by shared gravitationally induced tissue deformation, compliance distribution, and the effect of the hydrostatic pressure gradient on vessel and capillary size and blood pressures. Contribution from the matching airway and arterial tree geometries in this model is minor under normal gravity in the supine adult human lung. NEW & NOTEWORTHY We use a computational model to systematically analyze contributors to ventilation-perfusion matching in the lung. The model predicts that the multiple effects of gravity are the predominant mechanism in providing passive ventilation-perfusion matching in the supine adult human lung under normal gravitational loads, while geometric matching of airway and arterial trees plays a minor role.


Subject(s)
Gravitation , Lung/physiology , Models, Biological , Pulmonary Gas Exchange , Supine Position/physiology , Humans , Male , Young Adult
12.
Allergy ; 72(12): 1891-1903, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28543283

ABSTRACT

BACKGROUND: Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS: Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS: AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION: These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protein Phosphatase 2/antagonists & inhibitors , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/metabolism , Airway Remodeling , Animals , Biomarkers , Cytokines , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression , Inflammation Mediators/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/pathology
13.
J Gen Virol ; 98(3): 405-412, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27983476

ABSTRACT

Preventing virally induced liver disease begins with an understanding of the host factors that define susceptibility to infection. Hepatitis C virus (HCV) is a global health issue, with an estimated 170 million infected individuals at risk of developing liver disease including fibrosis and hepatocellular carcinoma. The liver is the major reservoir supporting HCV replication and this hepatocellular tropism is defined by HCV engagement of cellular entry receptors. Hepatocytes are polarized in vivo and this barrier function limits HCV entry. We previously reported that activated macrophages promote HCV entry into polarized hepatocytes via a TNF-α-dependent process; however, the underlying mechanism was not defined. In this study, we show that several TNF superfamily members, including TNF-α, TNF-ß, TWEAK and LIGHT, promote HCV entry via NF-κB-mediated activation of myosin light chain kinase (MLCK) and disruption of tight junctions. These observations support a model where HCV hijacks an inflammatory immune response to stimulate infection and uncovers a role for NF-κB-MLCK signalling in maintaining hepatocellular tight junctions.


Subject(s)
Hepacivirus/physiology , Hepatitis C/virology , Liver/virology , Myosin-Light-Chain Kinase/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factors/metabolism , Virus Internalization , Carcinoma, Hepatocellular/virology , Enzyme Activation , Hepatitis C/metabolism , Hepatocytes/virology , Humans , Liver/metabolism , Liver Cirrhosis/virology , Liver Neoplasms/virology , Signal Transduction , Tight Junctions/metabolism , Tight Junctions/virology , Transcription Factor RelA/metabolism
14.
Ann Rheum Dis ; 76(3): 612-619, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27597652

ABSTRACT

OBJECTIVES: Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP. METHODS: The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP. RESULTS: TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation. CONCLUSIONS: The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/enzymology , Protein Phosphatase 2/metabolism , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Amino Alcohols/therapeutic use , Animals , Apolipoproteins E/therapeutic use , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/prevention & control , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Enzyme Activation/drug effects , Fibroblasts/metabolism , Humans , MAP Kinase Signaling System , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy , Phosphorylation , Protein Phosphatase 2/drug effects , RNA, Messenger/metabolism , Serine/metabolism , Synovial Membrane/metabolism , Tristetraprolin/genetics
15.
Interface Focus ; 5(2): 20140078, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25844150

ABSTRACT

The placenta provides all the nutrients required for the fetus through pregnancy. It develops dynamically, and, to avoid rejection of the fetus, there is no mixing of fetal and maternal blood; rather, the branched placental villi 'bathe' in blood supplied from the uterine arteries. Within the villi, the feto-placental vasculature also develops a complex branching structure in order to maximize exchange between the placental and maternal circulations. To understand the development of the placenta, we must translate functional information across spatial scales including the interaction between macro- and micro-scale haemodynamics and account for the effects of a dynamically and rapidly changing structure through the time course of pregnancy. Here, we present steps towards an anatomically based and multiscale approach to modelling the feto-placental circulation. We assess the effect of the location of cord insertion on feto-placental blood flow resistance and flow heterogeneity and show that, although cord insertion does not appear to directly influence feto-placental resistance, the heterogeneity of flow in the placenta is predicted to increase from a 19.4% coefficient of variation with central cord insertion to 23.3% when the cord is inserted 2 cm from the edge of the placenta. Model geometries with spheroidal and ellipsoidal shapes, but the same volume, showed no significant differences in flow resistance or heterogeneity, implying that normal asymmetry in shape does not affect placental efficiency. However, the size and number of small capillary vessels is predicted to have a large effect on feto-placental resistance and flow heterogeneity. Using this new model as an example, we highlight the importance of taking an integrated multi-disciplinary and multiscale approach to understand development of the placenta.

16.
Ann Biomed Eng ; 42(8): 1631-43, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24770844

ABSTRACT

Hypoxic pulmonary vasoconstriction (HPV) is an adaptive response unique to the lung whereby blood flow is diverted away from areas of low alveolar oxygen to improve ventilation-perfusion matching and resultant gas exchange. Some previous experimental studies have suggested that the HPV response to hypoxia is blunted in acute pulmonary embolism (APE), while others have concluded that HPV contributes to elevated pulmonary blood pressures in APE. To understand these contradictory observations, we have used a structure-based computational model of integrated lung function in 10 subjects to study the impact of HPV on pulmonary hemodynamics and gas exchange in the presence of regional arterial occlusion. The integrated model includes an experimentally-derived model for HPV. Its function is validated against measurements of pulmonary vascular resistance in normal subjects at four levels of inspired oxygen. Our results show that the apparently disparate observations of previous studies can be explained within a single model: the model predicts that HPV increases mean pulmonary artery pressure in APE (by 8.2 ± 7.0% in these subjects), and concurrently shows a reduction in response to hypoxia in the subjects who have high levels of occlusion and therefore maximal HPV in normoxia.


Subject(s)
Hypoxia/physiopathology , Pulmonary Artery/physiopathology , Pulmonary Embolism/physiopathology , Vasoconstriction/physiology , Adult , Animals , Arterial Pressure , Dogs , Female , Humans , Male , Middle Aged , Models, Biological , Pulmonary Circulation , Pulmonary Gas Exchange , Vascular Resistance
17.
Respir Physiol Neurobiol ; 190: 1-13, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24080246

ABSTRACT

Clot load scores have previously been developed with the goal of improving prognosis in acute pulmonary embolism (PE). These scores provide a simple estimate of pulmonary vascular bed obstruction, however they have not been adopted clinically as they have poor correlation with mortality and right ventricular (RV) dysfunction. This study performed a quantitative analysis of blood flow and gas exchange in 12 patient-specific models of PE, to understand the limitations of current clot load scores and how their prognostic value could be improved. Prediction of hypoxemia in the models when using estimated baseline (non-occluded) minute ventilation and cardiac output correlated closely with clinical metrics for RV dysfunction, whereas the clot load score had only a weak correlation. The model predicts that large central clots have a greater impact on function than smaller distributed clots with the same total clot load, and that the partial occlusion of a vessel only has a significant impact on pulmonary function when the vessel is close to completely occluded. The effect of clot distribution on the redistribution of blood from its normal pattern - and hence the magnitude of the potential effect on gas exchange - is represented in the model but is not included in current clot load scores. Improved scoring systems need to account for the expected normal distribution of blood in the lung, and the impact of clot on redistributing the blood flow.


Subject(s)
Blood Coagulation , Pulmonary Embolism/diagnosis , Pulmonary Embolism/physiopathology , Severity of Illness Index , Acute Disease , Adult , Aged , Computer Simulation , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Models, Cardiovascular , Pulmonary Embolism/diagnostic imaging , Radiography , Tomography Scanners, X-Ray Computed , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/physiopathology
18.
Pulm Circ ; 1(3): 365-76, 2011.
Article in English | MEDLINE | ID: mdl-22140626

ABSTRACT

Acute pulmonary embolism causes redistribution of blood in the lung, which impairs ventilation/perfusion matching and gas exchange and can elevate pulmonary arterial pressure (PAP) by increasing pulmonary vascular resistance (PVR). An anatomically-based multi-scale model of the human pulmonary circulation was used to simulate pre- and post-occlusion flow, to study blood flow redistribution in the presence of an embolus, and to evaluate whether reduction in perfused vascular bed is sufficient to increase PAP to hypertensive levels, or whether other vasoconstrictive mechanisms are necessary. A model of oxygen transfer from air to blood was included to assess the impact of vascular occlusion on oxygen exchange. Emboli of 5, 7, and 10 mm radius were introduced to occlude increasing proportions of the vasculature. Blood flow redistribution was calculated after arterial occlusion, giving predictions of PAP, PVR, flow redistribution, and micro-circulatory flow dynamics. Because of the large flow reserve capacity (via both capillary recruitment and distension), approximately 55% of the vasculature was occluded before PAP reached clinically significant levels indicative of hypertension. In contrast, model predictions showed that even relatively low levels of occlusion could cause localized oxygen deficit. Flow preferentially redistributed to gravitationally non-dependent regions regardless of occlusion location, due to the greater potential for capillary recruitment in this region. Red blood cell transit times decreased below the minimum time for oxygen saturation (<0.25 s) and capillary pressures became high enough to initiate cell damage (which may result in edema) only after ~80% of the lung was occluded.

19.
Comput Math Methods Med ; 2011: 287186, 2011.
Article in English | MEDLINE | ID: mdl-22162722

ABSTRACT

The ability of an oocyte to successfully mature is highly dependent on intrafollicular conditions, including the size and structure of the follicle. Here we present a mathematical model of oxygen transport in the antral follicle. We relate mean oxygen concentration in follicular fluid of bovine follicles to the concentration in the immediate vicinity of the cumulus-oocyte complex (COC). The model predicts that the oxygen levels within the antral follicle are dependent on the size and structure of the follicle and that the mean level of dissolved oxygen in follicular fluid does not necessarily correspond to that reaching the COC.


Subject(s)
Models, Biological , Oocytes/metabolism , Ovarian Follicle/anatomy & histology , Ovarian Follicle/metabolism , Oxygen/metabolism , Animals , Cattle , Female , Follicular Fluid/metabolism , Numerical Analysis, Computer-Assisted
20.
Philos Trans A Math Phys Eng Sci ; 369(1954): 4255-77, 2011 Nov 13.
Article in English | MEDLINE | ID: mdl-21969675

ABSTRACT

Pulmonary embolism (PE) is the most common cause of acute pulmonary hypertension, yet it is commonly undiagnosed, with risk of death if not recognized promptly and managed accordingly. Patients typically present with hypoxemia and hypomania, although the presentation varies greatly, being confounded by co-morbidities such as pre-existing cardio-respiratory disease. Previous studies have demonstrated variable patient outcomes in spite of similar extent and distribution of pulmonary vascular occlusion, but the path physiological determinants of outcome remain unclear. Computational models enable exact control over many of the compounding factors leading to functional outcomes and therefore provide a useful tool to understand and assess these mechanisms. We review the current state of pulmonary blood flow models. We present a pilot study within 10 patients presenting with acute PE, where patient-derived vascular occlusions are imposed onto an existing model of the pulmonary circulation enabling predictions of resultant haemodynamic after embolus occlusion. Results show that mechanical obstruction alone is not sufficient to cause pulmonary arterial hypertension, even when up to 65 per cent of lung tissue is occluded. Blood flow is found to preferentially redistribute to the gravitationally non-dependent regions. The presence of an additional downstream occlusion is found to significantly increase pressures.


Subject(s)
Lung/blood supply , Pulmonary Embolism/diagnosis , Regional Blood Flow , Algorithms , Blood Flow Velocity , Comorbidity , Computational Biology/methods , Computer Simulation , Humans , Lung/physiopathology , Models, Anatomic , Pilot Projects , Pulmonary Circulation , Pulmonary Embolism/physiopathology , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...