Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 275: 129951, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33662722

ABSTRACT

During the summer months, urban areas are literal hot spots of mosquito-borne disease transmission and air pollution. Public health authorities release aerosolized pesticides directly into the atmosphere to help control adult mosquito populations and thereby reduce the threat of diseases, such as Zika Virus. The primary adulticides (i.e. pesticides used to control adult mosquito populations) in Houston, TX are permethrin and malathion. These adulticides are typically sprayed at night using ultra-low volume sprayers. Particulate matter (PM) samples including total suspended and fine PM (PM < 2.5 µm in aerodynamic diameter) were collected at four ground-based sites across Houston in 2013 and include daytime, nighttime, and 24 h samples. Malathion is initially sprayed as coarse aerosol (5-25 µm), but is measured in fine aerosol (<2.5 µm) and coarse aerosol in the urban atmosphere. Particle size is relevant both for deposition velocities and for human exposure. Atmospheric permethrin concentrations measured in nighttime samples peak at 60 ng m-3, while malathion nighttime concentrations peak near 40 ng m-3. Malaoxon, an oxidation product of malathion, was also frequently detected at concentrations >10 ng m-3, indicating significant nighttime oxidation. Based on the loss of malathion and the increase in malaoxon, the atmospheric half-life of malathion in Houston was estimated at <12 h, which was significantly shorter than previous half-life estimates (∼days). Importantly, malaoxon is estimated to be 22-33 times more toxic to humans than malathion. Both the aerosol size and the half-life are critical for mosquito control, human exposure, and risk assessment of these routine pesticides.


Subject(s)
Insecticides , Pesticides , Zika Virus Infection , Zika Virus , Aerosols/analysis , Animals , Humans , Malathion/analysis , Mosquito Control , Particulate Matter/analysis , Permethrin , Pesticides/analysis
2.
Atmos Environ (1994) ; 2442021 Jan 01.
Article in English | MEDLINE | ID: mdl-33414674

ABSTRACT

Understanding the drivers for high ozone (O3) and atmospheric particulate matter (PM) concentrations is a pressing issue in urban air quality, as this understanding informs decisions for control and mitigation of these key pollutants. The Houston, TX metropolitan area is an ideal location for studying the intersection between O3 and atmospheric secondary organic carbon (SOC) production due to the diversity of source types (urban, industrial, and biogenic) and the on- and off-shore cycling of air masses over Galveston Bay, TX. Detailed characterization of filter-based samples collected during Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Houston field experiment in September 2013 were used to investigate sources and composition of organic carbon (OC) and potential relationships between daily maximum 8 h average O3 and PM. The current study employed a novel combination of chemical mass balance modeling defining primary (i.e. POC) versus secondary (i.e. SOC) organic carbon and radiocarbon (14C) for apportionment of contemporary and fossil carbon. The apportioned sources include contemporary POC (biomass burning [BB], vegetative detritus), fossil POC (motor vehicle exhaust), biogenic SOC and fossil SOC. The filter-based results were then compared with real-time measurements by aerosol mass spectrometry. With these methods, a consistent urban background of contemporary carbon and motor vehicle exhaust was observed in the Houston metropolitan area. Real-time and filter-based characterization both showed that carbonaceous aerosols in Houston was highly impacted by SOC or oxidized OC, with much higher contributions from biogenic than fossil sources. However, fossil SOC concentration and fractional contribution had a stronger correlation with daily maximum 8 h average O3, peaking during high PM and O3 events. The results indicate that point source emissions processed by on- and off-shore wind cycles likely contribute to peak events for both PM and O3 in the greater Houston metropolitan area.

3.
Arch Environ Contam Toxicol ; 72(4): 596-605, 2017 May.
Article in English | MEDLINE | ID: mdl-28447121

ABSTRACT

B-cell lymphoma, a common morphologic variant of non-Hodgkin lymphoma, has been associated with persistent pollutants in humans, but this association is not well-characterized in top-level predators sharing marine resources with humans. We characterized and compared blubber contaminants and hormones of a pregnant harbor porpoise (Phocoena phocoena) with B-cell lymphoma, with those in two presumed healthy fishery by-caught porpoises with no lymphoma: a pregnant adult and female juvenile. Common historic use compounds, including polychlorinated biphenyls, polybrominated diphenyl ethers, and pesticides, were evaluated in blubber samples from three porpoises. In addition, blubber cortisol and progesterone levels (ng/g) were determined in all three animals. Total pollutant concentrations were highest in the juvenile porpoise, followed by the lymphoma porpoise and the nonlymphoma adult. Blubber cortisol concentrations were 191% greater in the pregnant with lymphoma porpoise compared with the pregnant no lymphoma porpoise, and 89% greater in the juvenile female compared with the pregnant no lymphoma porpoise. Although both adults were pregnant, progesterone levels were substantially greater (90%) in the healthy compared with the lymphoma adult. Health monitoring of top-level marine predators, such as porpoise, provides a sentinel measure of contaminants that serve as indicators of potential environmental exposure to humans.


Subject(s)
Environmental Monitoring , Lymphoma, B-Cell/metabolism , Phocoena/metabolism , Water Pollutants, Chemical/metabolism , Adipose Tissue/metabolism , Animals , Female , Halogenated Diphenyl Ethers/metabolism , Pesticides/metabolism , Polychlorinated Biphenyls/metabolism
4.
Environ Sci Technol ; 51(8): 4239-4247, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28294598

ABSTRACT

Atmospheric particulate matter (PM) samples were collected from four ground-based sites located in the Houston, TX (September 21-28, 2013) and were analyzed for 12 organophosphate esters (OPEs; current-use plasticizers and flame retardants). Samples analyzed included daytime, nighttime, and 24 h PM of <2.5 µm aerodynamic diameter (PM2.5) and total suspended particulate (TSP) samples. PM2.5 and TSP atmospheric ΣOPE concentrations varied over an order of magnitude and were statistically significantly different between urban and suburban and industrial sites. Additionally, significant temporal variability was also identified; for example, daytime atmospheric concentrations of 2-ethylhexyl diphenyl phosphate (EHDPP; 610 ± 220 pg m-3) measured in TSP samples were significantly higher than nighttime concentrations (280 ± 180 pg m-3; p = 0.03). Detailed discussions of the spatial and temporal distribution are given for Tris-(1-chloro-2-propyl) phosphate (TCiPP), EHDPP, tri-n-butyl phosphate (TnBP), and triphenyl phosphate (TPhP). Correlations to bulk measurements of carbonaceous PM including organic carbon, elemental carbon, and water-soluble organic carbon were used to understand potential sources and urban atmospheric transport. These results highlight the fundamental complexity associated with assessing OPE atmospheric concentrations across a large urban landscape and specific knowledge gaps at the intersection of consumer products and safety with environmental and human health.


Subject(s)
Air Pollutants , Particulate Matter , Environmental Monitoring , Flame Retardants , Organophosphates
5.
Bull Environ Contam Toxicol ; 97(6): 786-792, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27631504

ABSTRACT

The atmospheric concentrations of seven current-use pesticides in particulate matter were determined at four locations throughout the Houston metropolitan area in TSP and PM2.5 samples from September 2013. Atmospheric concentrations in both TSP and PM2.5 ranged from below method detection limits (MDLs) to nearly 1100 pg m-3. The three compounds most frequently detected above MDLs were chlorothalonil, bifenthrin, and λ-cyhalothrin. Atmospheric chlorothalonil concentrations were above 800 pg m-3 in several TSP samples, but

Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Pesticides/analysis , Environmental Monitoring/methods , Nitriles/analysis , Pyrethrins/analysis , Texas , Wind
6.
Chemosphere ; 137: 33-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25985427

ABSTRACT

An analytical method has been developed for the pressurized liquid extraction (PLE) of a wide range of semi-volatile organic compounds (SVOCs) from atmospheric particulate matter. Approximately 130 SVOCs from eight compound classes were selected as molecular markers of (1) agricultural activity (30 current and historic-use pesticides), (2) industrial activity (18 PCBs), (3) consumer products and building materials (16 PBDEs, 11 OPEs), and (4) motor vehicle exhaust (22 PAHs, 16 alkanes, 9 hopanes, 8 steranes). Currently, there is no analytical method validated for the extraction of all eight compound classes in a single automated technique. The extraction efficiencies of varying solvents and solvent combinations at high temperatures and pressures were examined. Extracts were concentrated and analyzed by gas chromatography coupled with mass spectrometry. The optimized PLE method utilized methylene chloride:acetone (2:1 v/v) at 100 °C with three (5 min) static cycles, flush volume of 80%, and a 100 s N2 purge. Spike and recovery experiments (n=7) provided average percent recoveries for pesticides, PCBs, PBDEs, OPEs, PAHs, alkanes, hopanes, and steranes of 88.8±4.0%, 86.9±2.6%, 83.8±2.9%, 101±6%, 90.3±6.1%, 74.4±8.8%, 104±8%, and 86.5±8.6%, respectively. The developed method was applied to atmospheric particulate matter samples collected in the greater Houston, TX metropolitan area. Ambient concentrations of eight classes of compounds (92 SVOCs) were reported in pg m(-3).


Subject(s)
Chemical Fractionation/methods , Environmental Pollutants/analysis , Environmental Pollutants/isolation & purification , Particulate Matter/chemistry , Pressure , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Alkanes/analysis , Alkanes/isolation & purification , Cyclopentanes/analysis , Cyclopentanes/isolation & purification , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/isolation & purification , Mass Spectrometry , Organophosphates/analysis , Organophosphates/isolation & purification , Pesticides/analysis , Pesticides/isolation & purification , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Triterpenes/analysis , Triterpenes/isolation & purification , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...