Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 40(5): 1220-1230, 2020 05.
Article in English | MEDLINE | ID: mdl-32160775

ABSTRACT

OBJECTIVE: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease. Approach and Results: Townes humanized transgenic mouse model of SCA was used to test the hypothesis that elastic lamina and structural damage in carotid arteries increased with age and was accelerated in mice homozygous for SCA (sickle cell anemia homozygous genotype [SS]) due to inflammatory signaling pathways activating proteolytic enzymes. Elastic lamina fragmentation observed by 1 month in SS mice compared with heterozygous littermate controls (sickle cell trait heterozygous genotype [AS]). Positive immunostaining for cathepsin K, a powerful collagenase and elastase, confirmed accelerated proteolytic activity in SS carotids. Larger cross-sectional areas were quantified by magnetic resonance angiography and increased arterial compliance in SS carotids were also measured. Inhibiting JNK (c-jun N-terminal kinase) signaling with SP600125 significantly reduced cathepsin K expression, elastin fragmentation, and carotid artery perimeters in SS mice. By 5 months of age, continued medial thinning and collagen degradation was mitigated by treatment of SS mice with JNK inhibitor. CONCLUSIONS: Arterial remodeling due to SCA is mediated by JNK signaling, cathepsin proteolytic upregulation, and degradation of elastin and collagen. Demonstration in Townes mice establishes their utility for mechanistic studies of arterial vasculopathy, related complications, and therapeutic interventions for large artery damage due to SCA.


Subject(s)
Anemia, Sickle Cell/drug therapy , Anthracenes/pharmacology , Carotid Arteries/drug effects , Carotid Artery Diseases/prevention & control , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Vascular Remodeling/drug effects , Anemia, Sickle Cell/enzymology , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/physiopathology , Animals , Carotid Arteries/enzymology , Carotid Arteries/physiopathology , Carotid Artery Diseases/enzymology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/physiopathology , Cathepsin K/metabolism , Collagen/metabolism , Disease Models, Animal , Elastin/metabolism , Hemoglobins/genetics , Homozygote , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Transgenic , Mutation , Proteolysis , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL