Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20412, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989777

ABSTRACT

TL-895 (formerly known as M7583) is a potent, highly selective, adenosine triphosphate (ATP)-competitive, second-generation, irreversible inhibitor of Bruton's tyrosine kinase (BTK). We characterized its biochemical and cellular effects in in vitro and in vivo models. TL-895 was evaluated preclinically for potency against BTK using IC50 concentration-response curves; selectivity using a 270-kinase panel; BTK phosphorylation in Ramos Burkitt's lymphoma cells by ProteinSimple Wes analysis of one study; anti-proliferative effects in primary chronic lymphocytic leukemia (CLL) blasts; cell viability effects in diffuse large B-cell lymphoma (DLBCL) and mantle-cell lymphoma (MCL) cell lines; effects on antibody-dependent cell-mediated cytotoxicity (ADCC) from Daudi cells and chromium-51 release from human tumor cell lines; and efficacy in vivo using four MCL xenograft model and 21 DLBCL patient-derived xenograft (PDX) models (subtypes: 9 ABC, 11 GCB, 1 Unclassified). TL-895 was active against recombinant BTK (average IC50 1.5 nM) and inhibited only three additional kinases with IC50 within tenfold of BTK activity. TL-895 inhibited BTK auto-phosphorylation at the Y223 phosphorylation site (IC50 1-10 nM). TL-895 inhibited the proliferation of primary CLL blasts in vitro and inhibited growth in a subset of activated DLBCL and MCL cell lines. TL-895 inhibited the ADCC mechanism of therapeutic antibodies only at supra-clinical exposure levels. TL-895 significantly inhibited tumor growth in the Mino MCL xenograft model and in 5/21 DLBCL PDX models relative to vehicle controls. These findings demonstrate the potency of TL-895 for BTK and its efficacy in models of B-cell lymphoma despite its refined selectivity.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , B-Lymphocytes/metabolism , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Lymphoma, Large B-Cell, Diffuse/pathology
2.
Sci Rep ; 13(1): 16017, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749105

ABSTRACT

The PI3K-Akt-mTOR (PAM) pathway is implicated in tumor progression in many tumor types, including metastatic gastric cancer (GC). The initial promise of PAM inhibitors has been unrealized in the clinic, presumably due, in part, to the up-regulation of Akt signaling that occurs when the pathway is inhibited. Here we present that DIACC3010 (formerly M2698), an inhibitor of two nodes in the PAM pathway, p70S6K and Akt 1/3, blocks the pathway in in vitro and in vivo preclinical models of GC while providing a mechanism that inhibits signaling from subsequent Akt up-regulation. Utilizing GC cell lines and xenograft models, we identified potential markers of DIACC3010-sensitivity in Her2-negative tumors, i.e., PIK3CA mutations, low basal pERK, and a group of differentially expressed genes (DEGs). The combination of DIACC3010 and trastuzumab was evaluated in Her2-positive cell lines and models. Potential biomarkers for the synergistic efficacy of the combination of DIACC3010 + trastuzumab also included DEGs as well as a lack of up-regulation of pERK. Of 27 GC patient-derived xenograft (PDX) models tested in BALB/c nu/nu mice, 59% were sensitive to DIACC3010 + trastuzumab. Of the 21 HER2-negative PDX models, DIACC3010 significantly inhibited the growth of 38%. Altogether, these results provide a path forward to validate the potential biomarkers of DIACC3010 sensitivity in GC and support clinical evaluation of DIACC3010 monotherapy and combination with trastuzumab in patients with HER2- negative and positive advanced GCs, respectively.


Subject(s)
Stomach Neoplasms , Animals , Mice , Humans , Stomach Neoplasms/drug therapy , Ribosomal Protein S6 Kinases, 70-kDa , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors , Angiogenesis Inhibitors , Disease Models, Animal
3.
Mol Cancer Ther ; 22(7): 833-843, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36999986

ABSTRACT

The mesenchymal-epithelial transition factor (MET) proto-oncogene encodes the MET receptor tyrosine kinase. MET aberrations drive tumorigenesis in several cancer types through a variety of molecular mechanisms, including MET mutations, gene amplification, rearrangement, and overexpression. Therefore, MET is a therapeutic target and the selective type Ib MET inhibitor, tepotinib, was designed to potently inhibit MET kinase activity. In vitro, tepotinib inhibits MET in a concentration-dependent manner irrespective of the mode of MET activation, and in vivo, tepotinib exhibits marked, dose-dependent antitumor activity in MET-dependent tumor models of various cancer indications. Tepotinib penetrates the blood-brain barrier and demonstrates strong antitumor activity in subcutaneous and orthotopic brain metastasis models, in-line with clinical activity observed in patients. MET amplification is an established mechanism of resistance to EGFR tyrosine kinase inhibitors (TKI), and preclinical studies show that tepotinib in combination with EGFR TKIs can overcome this resistance. Tepotinib is currently approved for the treatment of adult patients with advanced or metastatic non-small cell lung cancer harboring MET exon 14 skipping alterations. This review focuses on the pharmacology of tepotinib in preclinical cancer models harboring MET alterations and demonstrates that strong adherence to the principles of the Pharmacological Audit Trail may result in a successful discovery and development of a precision medicine.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Adult , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
Lung Cancer ; 163: 77-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34942492

ABSTRACT

Central nervous system-penetrant therapies with intracranial efficacy against non-small cell lung cancer (NSCLC) brain metastases are urgently needed. We report preclinical studies investigating brain penetration and intracranial activity of the MET inhibitor tepotinib. After intravenous infusion of tepotinib in Wistar rats (n = 3), mean (±standard deviation) total tepotinib concentration was 2.87-fold higher in brain (505 ± 22 ng/g) than plasma (177 ± 20 ng/mL). In equilibrium dialysis experiments performed in triplicate, mean tepotinib unbound fraction was 0.35% at 0.3 and 3.0 µM tepotinib in rat brain tissue, and 4.0% at 0.3 and 1.0 µM tepotinib in rat plasma. The calculated unbound brain-to-plasma ratio was 0.25, indicating brain penetration sufficient for intracranial target inhibition. Of 20 screened subcutaneous patient-derived xenograft (PDX) models from lung cancer brain metastases (n = 1), two NSCLC brain metastases models (LU5349 and LU5406) were sensitive to the suboptimal dose of tepotinib of 30 mg/kg/qd (tumor volume change [%TV]: -12% and -88%, respectively). Molecular profiling (nCounter®; NanoString) revealed high-level MET amplification in both tumors (mean MET gene copy number: 11.2 and 24.2, respectively). Tepotinib sensitivity was confirmed for both subcutaneous models at a clinically relevant dose (125 mg/kg/qd; n = 5). LU5349 and LU5406 were orthotopically implanted into brains of mice and monitored by magnetic resonance imaging (MRI). Tepotinib 125 mg/kg/qd induced pronounced tumor regression, including complete or near-complete regressions, compared with vehicle in both orthotopic models (n = 10; median %TV: LU5349, -84%; LU5406, -63%). Intracranial antitumor activity of tepotinib did not appear to correlate with blood-brain barrier leakiness assessed in T1-weighted gadolinium contrast-enhanced MRI.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Brain/diagnostic imaging , Brain Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Heterografts , Humans , Lung Neoplasms/drug therapy , Piperidines , Proto-Oncogene Proteins c-met/metabolism , Pyridazines , Pyrimidines , Rats , Rats, Wistar , Xenograft Model Antitumor Assays
6.
J Med Chem ; 64(19): 14603-14619, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34596404

ABSTRACT

Herein, we report the discovery of a novel class of quinazoline carboxamides as dual p70S6k/Akt inhibitors for the treatment of tumors driven by alterations to the PI3K/Akt/mTOR (PAM) pathway. Through the screening of in-house proprietary kinase library, 4-benzylamino-quinazoline-8-carboxylic acid amide 1 stood out, with sub-micromolar p70S6k biochemical activity, as the starting point for a structurally enabled p70S6K/Akt dual inhibitor program that led to the discovery of M2698, a dual p70S6k/Akt inhibitor. M2698 is kinase selective, possesses favorable physical, chemical, and DMPK profiles, is orally available and well tolerated, and displayed tumor control in multiple in vivo studies of PAM pathway-driven tumors.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Ribosomal Protein S6 Kinases, 70-kDa , Animals , Humans , Cell Line, Tumor , High-Throughput Screening Assays , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Stereoisomerism , Structure-Activity Relationship , TOR Serine-Threonine Kinases/drug effects
7.
Bioorg Med Chem Lett ; 50: 128352, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34481987

ABSTRACT

Activation of the PI3K/Akt/mTOR kinase pathway is associated with human cancers. A dual p70S6K/Akt inhibitor is sufficient to inhibit strong tumor growth and to block negative impact of the compensatory Akt feedback loop activation. A scaffold docking strategy based on an existing quinazoline carboxamide series identified 4-aminopyrimidine analog 6, which showed a single-digit nanomolar and a micromolar potencies in p70S6K and Akt enzymatic assays. SAR optimization improved Akt enzymatic and p70S6K cellular potencies, reduced hERG liability, and ultimately discovered the promising candidate 37, which exhibited with a single digit nanomolar value in both p70S6K and Akt biochemical assays, and hERG activities (IC50 = 17.4 µM). This agent demonstrated dose-dependent efficacy in inhibiting mice breast cancer tumor growth and covered more than 90% pS6 inhibition up to 24 h at a dose of 200 mg/kg po.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Mammary Neoplasms, Animal/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Dogs , Female , Half-Life , Haplorhini , Mice , Molecular Docking Simulation , Molecular Structure , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Rats , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Structure-Activity Relationship , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Am J Cancer Res ; 6(4): 806-18, 2016.
Article in English | MEDLINE | ID: mdl-27186432

ABSTRACT

Dysregulated PI3K/Akt/mTOR (PAM) pathway signaling occurs in ~30% of human cancers, making it a rational target for new therapies; however, the effectiveness of some PAM pathway inhibitors, such as mTORC rapalogs, may be compromised by a compensatory feedback loop leading to Akt activation. In this study, the p70S6K/Akt dual inhibitor, M2698 (previously MSC2363318A), was characterized as a potential anti-cancer agent through examination of its pharmacokinetic, pharmacodynamic and metabolic properties, and anti-tumor activity. M2698 was highly potent in vitro (IC50 1 nM for p70S6K, Akt1 and Akt3 inhibition; IC50 17 nM for pGSK3ß indirect inhibition) and in vivo (IC50 15 nM for pS6 indirect inhibition), and relatively selective (only 6/264 kinases had an IC50 within 10-fold of p70S6K). Orally administered M2698 crossed the blood-brain barrier in rats and mice, with brain tumor exposure 4-fold higher than non-disease brain. Dose-dependent inhibition of target substrate phosphorylation was observed in vitro and in vivo, indicating that M2698 blocked p70S6K to provide potent PAM pathway inhibition while simultaneously targeting Akt to overcome the compensatory feedback loop. M2698 demonstrated dose-dependent tumor growth inhibition in mouse xenograft models derived from PAM pathway-dysregulated human triple-negative (MDA-MB-468) and Her2-expressing breast cancer cell lines (MDA-MB-453 and JIMT-1), and reduced brain tumor burden and prolonged survival in mice with orthotopically implanted U251 glioblastoma. These findings highlight M2698 as a promising PAM pathway inhibitor whose unique mechanism of action and capacity to pass the blood-brain barrier warrant clinical investigation in cancers with PAM pathway dysregulation, and those with central nervous system involvement.

9.
Free Radic Biol Med ; 95: 243-54, 2016 06.
Article in English | MEDLINE | ID: mdl-27021962

ABSTRACT

Oxidative stress is a central component of many chronic diseases. The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 p45-related factor 2 (Nrf2) system is a major regulatory pathway of cytoprotective genes against oxidative and electrophilic stress. Activation of the Nrf2 pathway plays crucial roles in the chemopreventive effects of various inducers. In this study, we developed a novel class of potent Nrf2 activators derived from ginger compound, [6]-shogaol (6S), using the Tg[glutathione S-transferase pi 1 (gstp1):green fluorescent protein (GFP)] transgenic zebrafish model. Investigation of structure-activity relationships of 6S derivatives indicates that the combination of an α,ß-unsaturated carbonyl entity and a catechol moiety in one compound enhances the Tg(gstp1:GFP) fluorescence signal in zebrafish embryos. Chemical reaction and in vivo metabolism studies of the four most potent 6S derivatives showed that both α,ß-unsaturated carbonyl entity and catechol moiety act as major active groups for conjugation with the sulfhydryl groups of the cysteine residues. In addition, we further demonstrated that 6S derivatives increased the expression of Nrf2 downstream target, heme oxygenase-1, in both a dose- and time-dependent manner. These results suggest that α,ß-unsaturated carbonyl entity and catechol moiety of 6S derivatives may react with the cysteine residues of Keap1, disrupting the Keap1-Nrf2 complex, thereby liberating and activating Nrf2. Our findings of natural product-derived Nrf2 activators lead to design options of potent Nrf2 activators for further optimization.


Subject(s)
Catechols/administration & dosage , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Animals , Animals, Genetically Modified/genetics , Antioxidants/administration & dosage , Antioxidants/chemical synthesis , Catechols/chemical synthesis , Cysteine/metabolism , Glutathione S-Transferase pi/genetics , Heme Oxygenase-1/genetics , Humans , Oxidative Stress/genetics , Signal Transduction/drug effects , Structure-Activity Relationship , Zebrafish/genetics
11.
Mol Cancer Ther ; 11(12): 2693-703, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23012245

ABSTRACT

Triple-negative breast cancers (TNBC) have an aggressive phenotype with a relatively high rate of recurrence and poor overall survival. To date, there is no approved targeted therapy for TNBCs. Aurora kinases act as regulators of mammalian cell division. They are important for cell-cycle progression and are frequently overexpressed or mutated in human tumors, including breast cancer. In this study, we investigated the therapeutic potential of targeting Aurora kinases in preclinical models of human breast cancers using a pan-inhibitor of Aurora kinases, AS703569. In vitro, AS703569 was tested in 15 human breast cancer cell lines. TNBC cell lines were more sensitive to AS703569 than were other types of breast cancer cells. Inhibition of proliferation was associated with cell-cycle arrest, aneuploidy, and apoptosis. In vivo, AS703569 administered alone significantly inhibited tumor growth in seven of 11 patient-derived breast cancer xenografts. Treatment with AS703569 was associated with a decrease of phospho-histone H3 expression. Finally, AS703569 combined to doxorubicin-cyclophosphamide significantly inhibited in vivo tumor recurrence, suggesting that Aurora kinase inhibitors could be used both in monotherapy and in combination settings. In conclusion, these data indicate that targeting Aurora kinases could represent a new effective approach for TNBC treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Aurora Kinases , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Growth Processes/drug effects , Cell Line, Tumor , Female , Humans , Immunohistochemistry , MCF-7 Cells , Mice , Mice, Nude , Molecular Targeted Therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...