Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Article in English | MEDLINE | ID: mdl-38664894

ABSTRACT

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Subject(s)
Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Organs at Risk/radiation effects , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods , Image Processing, Computer-Assisted/methods
2.
Mar Pollut Bull ; 202: 116342, 2024 May.
Article in English | MEDLINE | ID: mdl-38626635

ABSTRACT

Anthropogenic marine litter (AML) is a global environmental concern. One of the most conspicuous effects of AML is beach litter accumulation, the distribution of which is typically heterogenous. Little information is available on the potential effects of coastal topographic features on litter dispersal. We analysed the abundance, composition, and sources of beach litter on the East coast of England in relation to the presence of coastal groyne structures. Six beaches were surveyed in autumn and winter 2021 using the OSPAR methodology for monitoring beach litter. Litter abundance was lower on beaches with groynes present, which could infer that groynes deflect or bury AML. The presence of groynes had no significant effect on the composition/sources of beach litter. Single-use plastic packaging, fishing waste, and sewage-related debris were the largest contributors of beach litter in this region. Our findings indicate that man-made topographic features may affect marine litter dispersal and coastal accumulation.


Subject(s)
Bathing Beaches , Environmental Monitoring , England , Bathing Beaches/statistics & numerical data , Animals , Waste Products/analysis
4.
Sci Rep ; 14(1): 4411, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388522

ABSTRACT

3D ultrasound imaging of fetal faces has been predominantly confined to qualitative assessment. Many genetic conditions evade diagnosis and identification could assist with parental counselling, pregnancy management and neonatal care planning. We describe a methodology to build a shape model of the third trimester fetal face from 3D ultrasound and show how it can objectively describe morphological features and gestational-age related changes of normal fetal faces. 135 fetal face 3D ultrasound volumes (117 appropriately grown, 18 growth-restricted) of 24-34 weeks gestation were included. A 3D surface model of each face was obtained using a semi-automatic segmentation workflow. Size normalisation and rescaling was performed using a growth model giving the average size at every gestation. The model demonstrated a similar growth rate to standard head circumference reference charts. A landmark-free morphometry model was estimated to characterize shape differences using non-linear deformations of an idealized template face. Advancing gestation is associated with widening/fullness of the cheeks, contraction of the chin and deepening of the eyes. Fetal growth restriction is associated with a smaller average facial size but no morphological differences. This model may eventually be used as a reference to assist in the prenatal diagnosis of congenital anomalies with characteristic facial dysmorphisms.


Subject(s)
Prenatal Diagnosis , Ultrasonography, Prenatal , Pregnancy , Female , Infant, Newborn , Humans , Ultrasonography, Prenatal/methods , Pregnancy Trimester, Third , Imaging, Three-Dimensional/methods , Gestational Age , Fetal Growth Retardation , Fetal Development
5.
Mol Ecol Resour ; 24(2): e13901, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009398

ABSTRACT

Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.


Subject(s)
Fertility , Pest Control , Animals , Mice , Female , Male , Pest Control/methods , Fertility/genetics , Animals, Wild , Mammals , Vertebrates
6.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37971880

ABSTRACT

Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.


Subject(s)
Ciliopathies , Retinal Degeneration , Mice , Animals , Retinal Degeneration/genetics , Proteomics , Membrane Proteins/genetics , Membrane Lipids
7.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100545

ABSTRACT

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Subject(s)
Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
8.
Open Biol ; 13(9): 230151, 2023 09.
Article in English | MEDLINE | ID: mdl-37669692

ABSTRACT

Diurnal and seasonal rhythmicity, entrained by environmental and nutritional cues, is a vital part of all life on Earth operating at every level of organization; from individual cells, to multicellular organisms, whole ecosystems and societies. Redox processes are intrinsic to physiological function and circadian regulation, but how they are integrated with other regulatory processes at the whole-body level is poorly understood. Circadian misalignment triggered by a major stressor (e.g. viral infection with SARS-CoV-2) or recurring stressors of lesser magnitude such as shift work elicit a complex stress response that leads to desynchronization of metabolic processes. This in turn challenges the system's ability to achieve redox balance due to alterations in metabolic fluxes (redox rewiring). We infer that the emerging 'alternative redox states' do not always revert readily to their evolved natural states; 'Long COVID' and other complex disorders of unknown aetiology are the clinical manifestations of such rearrangements. To better support and successfully manage bodily resilience to major stress and other redox challenges needs a clear perspective on the pattern of the hysteretic response for the interaction between the redox system and the circadian clock. Characterization of this system requires repeated (ideally continuous) recording of relevant clinical measures of the stress responses and whole-body redox state (temporal redox phenotyping). The human/animal body is a complex 'system of systems' with multi-level buffering capabilities, and it requires consideration of the wider dynamic context to identify a limited number of stress-markers suitable for routine clinical decision making. Systematically mapping the patterns and dynamics of redox biomarkers along the stressor/disease trajectory will provide an operational model of whole-body redox regulation/balance that can serve as basis for the identification of effective interventions which promote health by enhancing resilience.


Subject(s)
COVID-19 , Ecosystem , Animals , Humans , Health Promotion , SARS-CoV-2 , Circadian Rhythm , Oxidation-Reduction
9.
Phys Med Biol ; 68(17)2023 08 29.
Article in English | MEDLINE | ID: mdl-37579753

ABSTRACT

Objective.Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR) contouring, enhancing quality and improving efficiency in radiotherapy. No commercial models exist for OAR contouring based on brain magnetic resonance imaging (MRI). We trained and evaluated computed tomography (CT) and MRI OAR autosegmentation models in RayStation. To ascertain clinical usability, we investigated the geometric impact of contour editing before training on model quality.Approach.Retrospective glioma cases were randomly selected for training (n= 32, 47) and validation (n= 9, 10) for MRI and CT, respectively. Clinical contours were edited using international consensus (gold standard) based on MRI and CT. MRI models were trained (i) using the original clinical contours based on planning CT and rigidly registered T1-weighted gadolinium-enhanced MRI (MRIu), (ii) as (i), further edited based on CT anatomy, to meet international consensus guidelines (MRIeCT), and (iii) as (i), further edited based on MRI anatomy (MRIeMRI). CT models were trained using: (iv) original clinical contours (CTu) and (v) clinical contours edited based on CT anatomy (CTeCT). Auto-contours were geometrically compared to gold standard validation contours (CTeCT or MRIeMRI) using Dice Similarity Coefficient, sensitivity, and mean distance to agreement. Models' performances were compared using paired Student's t-testing.Main results.The edited autosegmentation models successfully generated more segmentations than the unedited models. Paired t-testing showed editing pituitary, orbits, optic nerves, lenses, and optic chiasm on MRI before training significantly improved at least one geometry metric. MRI-based DL-AC performed worse than CT-based in delineating the lacrimal gland, whereas the CT-based performed worse in delineating the optic chiasm. No significant differences were found between the CTeCT and CTu except for optic chiasm.Significance.T1w-MRI DL-AC could segment all brain OARs except the lacrimal glands, which cannot be easily visualized on T1w-MRI. Editing contours on MRI before model training improved geometric performance. MRI DL-AC in RT may improve consistency, quality and efficiency but requires careful editing of training contours.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Humans , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Brain/diagnostic imaging , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
10.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398071

ABSTRACT

Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit.This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression, and results from mouse knockout models.This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals.In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.

12.
Nature ; 619(7971): 801-810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438528

ABSTRACT

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Subject(s)
Cellular Microenvironment , Heart , Multiomics , Myocardium , Humans , Cell Communication , Fibroblasts/cytology , Glutamic Acid/metabolism , Heart/anatomy & histology , Heart/innervation , Ion Channels/metabolism , Myocardium/cytology , Myocardium/immunology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuroglia/cytology , Pericardium/cytology , Pericardium/immunology , Plasma Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Sinoatrial Node/anatomy & histology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Heart Conduction System/anatomy & histology , Heart Conduction System/cytology , Heart Conduction System/metabolism
13.
Nat Med ; 29(6): 1563-1577, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37291214

ABSTRACT

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.


Subject(s)
COVID-19 , Lung Neoplasms , Pulmonary Fibrosis , Humans , Lung , Lung Neoplasms/genetics , Macrophages
14.
Nat Genet ; 55(1): 66-77, 2023 01.
Article in English | MEDLINE | ID: mdl-36543915

ABSTRACT

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.


Subject(s)
Lung , Respiratory Mucosa , Humans , Respiratory Mucosa/metabolism , Epithelial Cells/metabolism , B-Lymphocytes , Immunoglobulin A/metabolism
16.
J Sleep Res ; 32(2): e13730, 2023 04.
Article in English | MEDLINE | ID: mdl-36193767

ABSTRACT

This study aimed to examine the impact of break duration between consecutive shifts, time of break onset, and prior shift duration on total sleep time (TST) between shifts in heavy vehicle drivers (HVDs), and to assess the interaction between break duration and time of break onset. The sleep (actigraphy and sleep diaries) and work shifts (work diaries) of 27 HVDs were monitored during their usual work schedule for up to 9 weeks. Differences in TST between consecutive shifts and days off were assessed. Linear mixed models (followed by pairwise comparisons) assessed whether break duration, prior shift duration, time of break onset, and the interaction between break duration and break onset were related to TST between shifts. Investigators found TST between consecutive shifts (mean [SD] 6.38 [1.38] h) was significantly less than on days off (mean [SD] 7.63 [1.93] h; p < 0.001). Breaks starting between 12:01 and 8:00 a.m. led to shorter sleep (p < 0.05) compared to breaks starting between 4:01 and 8:00 p.m. Break durations up to 7, 9, and 11 h (Australian and European minimum break durations) resulted in a mean (SD) of 4.76 (1.06), 5.66 (0.77), and 6.41 (1.06) h of sleep, respectively. The impact of shift duration prior to the break and the interaction between break duration and time of break were not significant. HVDs' sleep between workdays is influenced independently by break duration and time of break onset. This naturalistic study provides evidence that current break regulations prevent sufficient sleep duration in this industry. Work regulations should evaluate appropriate break durations and break onset times to allow longer sleep opportunities for HVDs.


Subject(s)
Sleep , Work Schedule Tolerance , Humans , Australia , Sleep Duration , Actigraphy
17.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493756

ABSTRACT

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Subject(s)
Fetus , Lung , Humans , Cell Differentiation , Gene Expression Profiling , Lung/cytology , Organogenesis , Organoids , Atlases as Topic , Fetus/cytology
18.
Redox Biol ; 54: 102362, 2022 08.
Article in English | MEDLINE | ID: mdl-35709537

ABSTRACT

In blood, the majority of endothelial nitric oxide (NO) is scavenged by oxyhemoglobin, forming nitrate while a small part reacts with dissolved oxygen to nitrite; another fraction may bind to deoxyhemoglobin to generate nitrosylhemoglobin (HbNO) and/or react with a free cysteine to form a nitrosothiol. Circulating nitrite concentrations in healthy individuals are 200-700 nM, and can be even lower in patients with endothelial dysfunction. Those levels are similar to HbNO concentrations ([HbNO]) recently reported, whereby EPR-derived erythrocytic [HbNO] was lower in COVID-19 patients compared to uninfected subjects with similar cardiovascular risk load. We caution the values reported may not reflect true (patho)physiological concentrations but rather originate from complex chemical interactions of endogenous nitrite with hemoglobin and ascorbate/N-acetylcysteine. Using an orthogonal detection method, we find baseline [HbNO] to be in the single-digit nanomolar range; moreover, we find that these antioxidants, added to blood collection tubes to prevent degradation, artificially generate HbNO. Since circulating nitrite also varies with lifestyle, dietary habit and oral bacterial flora, [HbNO] may not reflect endothelial activity alone. Thus, its use as early marker of NO-dependent endothelial dysfunction to stratify COVID-19 patient risk may be premature. Moreover, oxidative stress not only impairs NO formation/bioavailability, but also shifts the chemical landscape into which NO is released, affecting its downstream metabolism. This compromises the endothelium's role as gatekeeper of tissue nutrient supply and modulator of blood cell function, challenging the body's ability to maintain redox balance. Further studies are warranted to clarify whether the nature of vascular dysfunction in COVID-19 is solely of endothelial nature or also includes altered erythrocyte function.


Subject(s)
COVID-19 , Nitrites , Electron Spin Resonance Spectroscopy , Endothelium/metabolism , Hemoglobins/metabolism , Humans , Nitric Oxide/metabolism , Nitrites/metabolism , Oxidation-Reduction , Translational Research, Biomedical
19.
Phys Imaging Radiat Oncol ; 22: 115-122, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35619643

ABSTRACT

Background and purpose: Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners. Materials and methods: A style-blind auto-encoder, using adversarial classification on the latent-space, was designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three manufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. Anatomical content preservation was measured through change in structural similarity index on contrast-cycling (δSSIM). Results: The percentage of radiomics features showing statistically significant scanner-dependence was reduced from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on harmonisation and de-harmonisation indicated excellent anatomical content preservation. Conclusions: Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fidelity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable harmonisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, including radiation oncology treatment stratification, planning and response monitoring.

20.
Eur Radiol ; 32(10): 7014-7025, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35486171

ABSTRACT

OBJECTIVES: Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical translation is hampered by lack of reproducibility across centres and difficulty in standardising image intensity in MRI datasets. The study aim was to perform a systematic review of different methods of MRI intensity standardisation prior to radiomic feature extraction. METHODS: MEDLINE, EMBASE, and SCOPUS were searched for articles meeting the following eligibility criteria: MRI radiomic studies where one method of intensity normalisation was compared with another or no normalisation, and original research concerning patients diagnosed with diffuse gliomas. Using PRISMA criteria, data were extracted from short-listed studies including number of patients, MRI sequences, validation status, radiomics software, method of segmentation, and intensity standardisation. QUADAS-2 was used for quality appraisal. RESULTS: After duplicate removal, 741 results were returned from database and reference searches and, from these, 12 papers were eligible. Due to a lack of common pre-processing and different analyses, a narrative synthesis was sought. Three different intensity standardisation techniques have been studied: histogram matching (5/12), limiting or rescaling signal intensity (8/12), and deep learning (1/12)-only two papers compared different methods. From these studies, histogram matching produced the more reliable features compared to other methods of altering MRI signal intensity. CONCLUSION: Multiple methods of intensity standardisation have been described in the literature without clear consensus. Further research that directly compares different methods of intensity standardisation on glioma MRI datasets is required. KEY POINTS: • Intensity standardisation is a key pre-processing step in the development of robust radiomic signatures to evaluate diffuse glioma. • A minority of studies compared the impact of two or more methods. • Further research is required to directly compare multiple methods of MRI intensity standardisation on glioma datasets.


Subject(s)
Artificial Intelligence , Glioma , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...