Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 110146, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904066

ABSTRACT

The ancestral gamete fusion protein, HAP2/GCS1, plays an essential role in fertilization in a broad range of taxa. To identify factors that may regulate HAP2/GCS1 activity, we screened mutants of the ciliate Tetrahymena thermophila for behaviors that mimic Δhap2/gcs1 knockout phenotypes in this species. Using this approach, we identified two new genes, GFU1 and GFU2, whose products are necessary for membrane pore formation following mating type recognition and adherence. GFU2 is predicted to be a single-pass transmembrane protein, while GFU1, though lacking obvious transmembrane domains, has the potential to interact directly with membrane phospholipids in the cytoplasm. Like Tetrahymena HAP2/GCS1, expression of GFU1 is required in both cells of a mating pair for efficient fusion to occur. To explain these bilateral requirements, we propose a model that invokes cooperativity between the fusion machinery on apposed membranes of mating cells and accounts for successful fertilization in Tetrahymena's multiple mating type system.

2.
J Eukaryot Microbiol ; 70(1): e12936, 2023 01.
Article in English | MEDLINE | ID: mdl-35808858

ABSTRACT

Mitochondrial cox1 689 bp barcodes are routinely used for identification of Tetrahymena species. Here, we examine whether two shorter nuclear sequences, the 5.8S rRNA gene region and the intergenic region between H3 and H4 histone genes, might also be useful either singly or in combination with each other or cox1. We obtained sequences from ~300 wild isolates deposited at the Tetrahymena Stock Center and analyzed additional sequences obtained from GenBank. The 5.8S rRNA gene and portions of its transcribed flanks identify isolates as to their major clade and uniquely identify some, but not all, species. The ~330 bp H3/H4 intergenic region possesses low intraspecific variability and is unique for most species. However, it fails to distinguish between two pairs of common species and their rarer counterparts, and its use is complicated by the presence of duplicate genes in some species. The results show that while the cox1 sequence is the best single marker for Tetrahymena species identification, 5.8S rRNA, and the H3/H4 intergenic regions sequences are useful, singly or in combination, to confirm cox1 species assignments or as part of a preliminary survey of newly collected Tetrahymena. From our newly collected isolates, the results extend the biogeographical range of T. shanghaiensis and T. malaccensis and identify a new species, Tetrahymena arleneae n. sp. herein described.


Subject(s)
Tetrahymena , Tetrahymena/genetics , Mitochondria/genetics , DNA, Intergenic/genetics , Phylogeny
3.
Protein Expr Purif ; 194: 106060, 2022 06.
Article in English | MEDLINE | ID: mdl-35134517

ABSTRACT

The requirement for low cost manufacturing makes bacterial cells a logical platform for the production of recombinant subunit vaccines for malaria. However, protein solubility has been a major stumbling block with prokaryotic expression systems. Notable examples include the transmission blocking vaccine candidates, Pfs25 and Pfs48/45, which are almost entirely insoluble when expressed as recombinant proteins in Escherichia coli. Various solubility tags have been used with limited success in improving solubility, although recent studies with granule lattice protein 1 (Grl1p) from the ciliated protozoan, Tetrahymena thermophila, have shown promise. Here, we examine a related solubility tag, granule lattice protein 3 (Grl3p) from T. thermophila, and compare it to both Grl1p and the well-studied maltose binding protein (MBP) used to improve the solubility of multiple protein targets. We find that Grl3p performs comparably to Grl1p when linked to Pfs25 but significantly improves solubility when paired with Pfs48/45.


Subject(s)
Escherichia coli Infections , Malaria Vaccines , Malaria , Tetrahymena thermophila , Antibodies, Protozoan , Antigens, Protozoan/genetics , Escherichia coli/metabolism , Humans , Plasmodium falciparum/genetics , Protozoan Proteins , Solubility , Tetrahymena thermophila/chemistry
4.
Handb Exp Pharmacol ; 267: 507-545, 2021.
Article in English | MEDLINE | ID: mdl-33963460

ABSTRACT

Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.


Subject(s)
Antibodies, Monoclonal , Potassium Channels , Animals , Antibodies, Monoclonal/therapeutic use
5.
Front Cell Dev Biol ; 9: 807313, 2021.
Article in English | MEDLINE | ID: mdl-35071241

ABSTRACT

Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.

6.
Sci Rep ; 9(1): 1029, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705292

ABSTRACT

Immobilization antigens (i-antigens) are surface membrane proteins that are widely recognized to be the ideal candidates as vaccines antigens for immunization against Cryptocaryon irritans. In this study, we cloned a putative i-antigen gene from C. irritans, which was expressed in all three stages of the C. irritans life-cycle, and localized primarily to the cell surface. The recombinant GDCI3 i-antigen was expressed and purified using the free-living ciliate, Tetrahymena thermophila as an expression system. The purified recombinant protein was recognized by rabbit anti-C. irritans antiserum and was capable of eliciting immobilizing antibodies in rabbits and fish suggesting that the antigen itself was correctly folded. Following immunization and parasite challenge, groupers vaccinated with, recombinant GDCI3 i-antigen had a 25% cumulative percent survival rate compared to 8.3% for controls. Both non-specific and parasite-specific IgMs were generated in fish following immunization, with the levels of both increasing following challenge. Parasite-specific IgM in mucus could only be elicited after challenge of the GDCI3 i-antigen vaccinated groupers. To our knowledge, this is the first report using the Tetrahymena expression system to generate C. irritans i-antigens and investigate their use for fish vaccination.


Subject(s)
Antigens, Protozoan/immunology , Ciliophora/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Blotting, Western , Ciliophora Infections/immunology , Fishes , Fluorescent Antibody Technique , Immunoglobulin M/metabolism , Plasmids/genetics , Tetrahymena thermophila/immunology , Transcriptome/genetics
7.
MAbs ; 11(2): 265-296, 2019.
Article in English | MEDLINE | ID: mdl-30526315

ABSTRACT

It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.


Subject(s)
Antibodies , Drug Development/methods , Drug Discovery/methods , Ion Channels/antagonists & inhibitors , Animals , Antibodies/chemistry , Antibodies/pharmacology , Humans
8.
Protein Expr Purif ; 153: 7-17, 2019 01.
Article in English | MEDLINE | ID: mdl-30081196

ABSTRACT

A transmission-blocking vaccine targeting the sexual stages of Plasmodium species could play a key role in eradicating malaria. Multiple studies have identified the P. falciparum proteins Pfs25 and Pfs48/45 as prime targets for transmission-blocking vaccines. Although significant advances have been made in recombinant expression of these antigens, they remain difficult to produce at large scale and lack strong immunogenicity as subunit antigens. We linked a self-assembling protein, granule lattice protein 1 (Grl1p), from the ciliated protozoan, Tetrahymena thermophila, to regions of the ectodomains of either Pfs25 or Pfs48/45. We found that resulting protein chimera could be produced in E. coli as nanoparticles that could be readily purified in soluble form. When produced in the E. coli SHuffle strain, fusion to Grl1p dramatically increased solubility of target antigens while at the same time directing the formation of particles with diameters centering on 38 and 25 nm depending on the antigen. In a number of instances, co-expression with chaperone proteins and induction at a lower temperature further increased expression and solubility. Based on Western blotting and ELISA analysis, Pfs25 and Pfs48/45 retained their transmission-blocking epitopes within E. coli-derived particles, and the particles themselves elicited strong antibody responses in rabbits when given with an aluminum-based adjuvant. Antibodies against Pfs25-containing nanoparticles blocked parasite transmission in standard membrane-feeding assays. In conclusion, fusion to Grl1p can act as a solubility enhancer for proteins with limited solubility while retaining correct folding, which may be useful for applications such as the production of vaccines and other biologics.


Subject(s)
Antibodies, Protozoan/biosynthesis , Calcium-Binding Proteins/genetics , Malaria Vaccines/genetics , Malaria, Falciparum/prevention & control , Membrane Glycoproteins/genetics , Plasmodium falciparum/chemistry , Protozoan Proteins/genetics , Tetrahymena thermophila/chemistry , Animals , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Biological Assay , Calcium-Binding Proteins/administration & dosage , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/immunology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/immunology , Mosquito Vectors/parasitology , Nanoparticles , Plasmodium falciparum/immunology , Protein Folding , Protozoan Proteins/administration & dosage , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Rabbits , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Tetrahymena thermophila/immunology
9.
PLoS Biol ; 16(8): e3000007, 2018 08.
Article in English | MEDLINE | ID: mdl-30125288

ABSTRACT

Sex has consequences-indeed, where would we be without it? Yet for all its importance, remarkably little is known about how sex evolved, why it has persisted, or even what mechanisms allow sperm-egg fusion to occur. Fortunately, answers to these questions are beginning to emerge with studies of hapless 2/generative cell specific1 (HAP2/GCS1), a molecular machine that promotes gamete fusion in organisms ranging from protists to flowering plants and insects. In studies by Fedry and colleagues, key structural features of the HAP2 protein are revealed for the first time, lending new insights into its mode of action and reinforcing its relationship to viral proteins that accomplish a similar task and may be intimately linked to the origins of cell-cell fusion events (including sexual reproduction) across evolutionary time.


Subject(s)
Arabidopsis Proteins/physiology , Carrier Proteins/physiology , Germ Cells/physiology , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Evolution , Carrier Proteins/genetics , Chlamydomonas/physiology , Eukaryota/metabolism , Female , Humans , Lipids , Male , Membrane Fusion/physiology , Membrane Proteins/metabolism , Ovary/metabolism , Reproduction/physiology , Spermatozoa/metabolism , Viral Proteins/metabolism
10.
Front Microbiol ; 8: 189, 2017.
Article in English | MEDLINE | ID: mdl-28232825

ABSTRACT

Although the presence of endosymbiotic rickettsial bacteria, specifically Candidatus Megaira, has been reported in diverse habitats and a wide range of eukaryotic hosts, it remains unclear how broadly Ca. Megaira are distributed in a single host species. In this study we seek to address whether Ca. Megaira are present in most, if not all isolates, of the parasitic ciliate Ichthyophthirius multifiliis. Conserved regions of bacterial 16S rRNA genes were either PCR amplified, or assembled from deep sequencing data, from 18 isolates/populations of I. multifiliis sampled worldwide (Brazil, Taiwan, and USA). We found that rickettsial rRNA sequences belonging to three out of four Ca. Megaira subclades could be consistently detected in all I. multifiliis samples. I. multifiliis collected from local fish farms tend to be inhabited by the same subclade of Ca. Megaira, whereas those derived from pet fish are often inhabited by more than one subclade of Ca. Megaira. Distributions of Ca. Megaira in I. multifiliis thus better reflect the travel history, but not the phylogeny, of I. multifiliis. In summary, our results suggest that I. multifiliis may be dependent on this endosymbiotic relationship, and the association between Ca. Megaira and I. multifiliis is more diverse than previously thought.

11.
Curr Biol ; 27(5): 651-660, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28238660

ABSTRACT

The conserved transmembrane protein, HAP2/GCS1, has been linked to fertility in a wide range of taxa and is hypothesized to be an ancient gamete fusogen. Using template-based structural homology modeling, we now show that the ectodomain of HAP2 orthologs from Tetrahymena thermophila and other species adopt a protein fold remarkably similar to the dengue virus E glycoprotein and related class II viral fusogens. To test the functional significance of this predicted structure, we developed a flow-cytometry-based assay that measures cytosolic exchange across the conjugation junction to rapidly probe the effects of HAP2 mutations in the Tetrahymena system. Using this assay, alterations to a region in and around a predicted "fusion loop" in T. thermophila HAP2 were found to abrogate membrane pore formation in mating cells. Consistent with this, a synthetic peptide corresponding to the HAP2 fusion loop was found to interact directly with model membranes in a variety of biophysical assays. These results raise interesting questions regarding the evolutionary relationships of class II membrane fusogens and harken back to a long-held argument that eukaryotic sex arose as the byproduct of selection for the horizontal transfer of a "selfish" genetic element from cell to cell via membrane fusion.


Subject(s)
Membrane Proteins/genetics , Protozoan Proteins/genetics , Tetrahymena thermophila/physiology , Fertilization , Flow Cytometry , Membrane Proteins/chemistry , Models, Molecular , Mutation , Protein Folding , Protozoan Proteins/chemistry , Tetrahymena thermophila/chemistry , Tetrahymena thermophila/genetics
12.
Mol Phylogenet Evol ; 86: 1-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25743182

ABSTRACT

Ichthyophthirius multifiliis is the etiologic agent of "white spot", a commercially important disease of freshwater fish. As a parasitic ciliate, I. multifiliis infects numerous host species across a broad geographic range. Although Ichthyophthirius outbreaks are difficult to control, recent sequencing of the I. multifiliis genome has revealed a number of potential metabolic pathways for therapeutic intervention, along with likely vaccine targets for disease prevention. Nonetheless, major gaps exist in our understanding of both the life cycle and population structure of I. multifiliis in the wild. For example, conjugation has never been described in this species, and it is unclear whether I. multifiliis undergoes sexual reproduction, despite the presence of a germline micronucleus. In addition, no good methods exist to distinguish strains, leaving phylogenetic relationships between geographic isolates completely unresolved. Here, we compared nucleotide sequences of SSUrDNA, mitochondrial NADH dehydrogenase subunit I and cox-1 genes, and 14 somatic SNP sites from nine I. multifiliis isolates obtained from four different states in the US since 1995. The mitochondrial sequences effectively distinguished the isolates from one another and divided them into at least two genetically distinct groups. Furthermore, none of the nine isolates shared the same composition of the 14 somatic SNP sites, suggesting that I. multifiliis undergoes sexual reproduction at some point in its life cycle. Finally, compared to the well-studied free-living ciliates Tetrahymena thermophila and Paramecium tetraurelia, I. multifiliis has lost 38% and 29%, respectively, of 16 experimentally confirmed conjugation-related genes, indicating that mechanistic differences in sexual reproduction are likely to exist between I. multifiliis and other ciliate species.


Subject(s)
Fishes/parasitology , Hymenostomatida/classification , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Hymenostomatida/genetics , Likelihood Functions , Models, Genetic , Polymorphism, Single Nucleotide , Reproduction/genetics , Sequence Analysis, DNA , United States
13.
Curr Biol ; 24(18): 2168-2173, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25155508

ABSTRACT

HAP2, a male-gamete-specific protein conserved across vast evolutionary distances, has garnered considerable attention as a potential membrane fusogen required for fertilization in taxa ranging from protozoa and green algae to flowering plants and invertebrate animals [1-6]. However, its presence in Tetrahymena thermophila, a ciliated protozoan with seven sexes or mating types that bypasses the production of male gametes, raises interesting questions regarding the evolutionary origins of gamete-specific functions in sexually dimorphic species. Here we show that HAP2 is expressed in all seven mating types of T. thermophila and that fertility is only blocked when the gene is deleted from both cells of a mating pair. HAP2 deletion strains of complementary mating types can recognize one another and form pairs; however, pair stability is compromised and membrane pore formation at the nuclear exchange junction is blocked. The absence of pore formation is consistent with previous studies suggesting a role for HAP2 in gamete fusion in other systems. We propose a model in which each of the several hundred membrane pores established at the conjugation junction of mating Tetrahymena represents the equivalent of a male/female interface, and that pore formation is driven on both sides of the junction by the presence of HAP2. Such a model supports the idea that many of the disparate functions of sperm and egg were shared by the "isogametes" of early eukaryotes and became partitioned to either male or female sex cells later in evolution.


Subject(s)
Germ Cells/physiology , Protozoan Proteins/genetics , Tetrahymena thermophila/physiology , Biological Evolution , Gene Deletion , Models, Biological , Molecular Sequence Data , Protozoan Proteins/metabolism , Reproduction , Sequence Analysis, DNA , Tetrahymena thermophila/genetics
14.
PLoS One ; 7(11): e48129, 2012.
Article in English | MEDLINE | ID: mdl-23144852

ABSTRACT

Rainbow trout (Oncorhynchus mykiss) were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags) and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(G)protein (VHSV G) were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR ß, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens are required for such a vaccine to be successful.


Subject(s)
Ciliophora Infections/veterinary , Fish Diseases/prevention & control , Oncorhynchus mykiss/immunology , Skin Diseases, Parasitic/veterinary , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/biosynthesis , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Aquaculture , Cells, Cultured , Ciliophora Infections/immunology , Ciliophora Infections/prevention & control , Fish Diseases/immunology , Gene Expression , HEK293 Cells , Humans , Hymenostomatida/genetics , Hymenostomatida/immunology , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Oncorhynchus mykiss/parasitology , Parasite Load , Skin Diseases, Parasitic/immunology , Skin Diseases, Parasitic/prevention & control , Spleen/immunology , Spleen/metabolism , Transfection , Vaccination , Vaccines, DNA/administration & dosage
15.
PLoS One ; 7(3): e33196, 2012.
Article in English | MEDLINE | ID: mdl-22427987

ABSTRACT

Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.


Subject(s)
Adaptive Immunity/immunology , Biological Evolution , Dendritic Cells/cytology , Dendritic Cells/immunology , Immunity, Innate/immunology , Oncorhynchus mykiss/immunology , T-Lymphocytes/immunology , Animals , Cell Culture Techniques , DNA Primers/genetics , Flow Cytometry , Microscopy, Electron, Transmission , Phagocytosis/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Spleen/cytology
16.
Database (Oxford) ; 2012: bas007, 2012.
Article in English | MEDLINE | ID: mdl-22434841

ABSTRACT

When funding for Tetrahymena Genome Database (TGD) ended in 2006, no further updates were made to this important community resource and the main database was taken offline in 2008. We have restored and updated this important resource for use by the Tetrahymena research community. We have also retooled the TGD website (now TGD Wiki) to allow members of the community to directly update the information presented for each gene, including gene names, descriptions and Gene Ontology annotations, from a web browser. Maintenance of genome annotations by the authors generating and publishing primary data, rather than dedicated scientific curators, is a viable alternative for the upkeep of genomes, particularly for organisms with smaller research communities. By combining simple, intuitive displays with the powerful search functions made possible by its underlying relational database, TGD Wiki has been designed to maximize participation by bench scientists in the development of their community bioinformatics resource. DATABASE URL: http://ciliate.org.


Subject(s)
Database Management Systems , Databases, Genetic , Genome, Protozoan , Internet , Tetrahymena/genetics , Amino Acid Sequence , Base Sequence , Genomics , User-Computer Interface
17.
Genome Biol ; 12(10): R100, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-22004680

ABSTRACT

BACKGROUND: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. RESULTS: We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. CONCLUSIONS: Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle.


Subject(s)
Ciliophora Infections/prevention & control , Genomics/methods , Hymenostomatida/genetics , Life Cycle Stages , Zebrafish/parasitology , Animals , Antigens, Protozoan/genetics , Base Composition , Chromosome Mapping , DNA, Mitochondrial/genetics , DNA, Protozoan/genetics , Databases, Genetic , Genes, Protozoan , Genome Size , Host-Parasite Interactions , Hymenostomatida/classification , Hymenostomatida/growth & development , Hymenostomatida/pathogenicity , Ictaluridae/parasitology , Macronucleus/genetics , Membrane Transport Proteins/genetics , Metabolic Networks and Pathways , Mitochondria/enzymology , Mitochondria/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Molecular Sequence Annotation , Phylogeny , Protein Kinases/classification , Protein Kinases/genetics , Protozoan Proteins/genetics , RNA, Protozoan/genetics , Zebrafish/genetics
18.
Mitochondrion ; 11(6): 909-18, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21856451

ABSTRACT

Here we demonstrate that ciliated protozoa can jettison mitochondria as intact organelles, releasing their contents to the extracellular space either in a soluble form, or in association with membrane vesicles at the cell periphery. The response is triggered by lateral clustering of GPI-anchored surface antigens, or by heat shock. In the first instance, extrusion is accompanied by elevated levels of intracellular calcium and is inhibited by Verapamil and BAPTA-AM arguing strongly for the involvement of calcium in triggering the response. Cells survive mitochondrial discharge raising the interesting possibility that extrusion is an early evolutionary adaptation to cell stress.


Subject(s)
Calcium/metabolism , Ciliophora/radiation effects , Mitochondria/radiation effects , Hot Temperature
19.
Mol Biochem Parasitol ; 178(1-2): 29-39, 2011.
Article in English | MEDLINE | ID: mdl-21524669

ABSTRACT

The parasitic ciliate, Ichthyophthirius multifiliis (Ich), is among the most important protozoan pathogens of freshwater fish. Ichthyophthirius cannot be grown in cell culture, and the development of effective prophylactic and therapeutic treatments has been hampered by a lack of information regarding genes involved in virulence, differentiation and growth. To help address this issue, we have generated EST libraries from the two major stages of the parasite life cycle that infect and develop within host tissues. A total of 25,084 ESTs were generated from non-normalized libraries prepared from polyA+ RNA of infective theronts and host-associated trophonts, respectively. Cluster analysis identified 5311 unique transcripts (UniScripts), of which 2091 were contigs and 3220 singletons. Extrapolation of the data based on rates of EST discovery suggests that more than half the expected protein-coding genes of I. multifiliis are represented in this data. BLASTX comparisons against GenBank nr, UniProtKB (SwissProt and TrEMBL), as well as Tetrahymena thermophila, Plasmodium falciparum, and Paramecium tetraurelia protein databases produced 3694 significant (E-value ≤1e(-10)) hits, of which 1178 were annotated using gene ontology (GO) analysis. A high proportion of UniScripts (63%) showed similarity to other ciliate proteins. When combined with expression profiling data, GO ontology analysis of Biological Process, Cellular Component, and Molecular Function revealed interesting differences in gene families expressed in the two stages. Indeed, the most abundant transcripts were highly stage-specific and coincided with the metabolic activities associated with each stage. This work provides an effective genomics resource to further our understanding of Ichthyophthirius biology, and lays the groundwork for the identification of potential drug targets and vaccines candidates for the control of this devastating fish pathogen.


Subject(s)
Expressed Sequence Tags , Gene Expression Profiling , Hymenostomatida/genetics , Animals , Cluster Analysis , Hymenostomatida/isolation & purification , Ictaluridae/parasitology , RNA, Protozoan/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
20.
Protist ; 161(1): 71-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19674934

ABSTRACT

Metallothioneins are ubiquitous small, cysteine-rich, metal-binding proteins that play important roles in intracellular metal homeostasis and detoxification. Very few data are available on the promoter region and the mechanism of metallothionein transcription in Protozoa. In this study, we focused on Tetrahymena thermophila MTT5 5'-flanking region. To define the sequence elements underlying the metal-responsiveness of this promoter, we constructed a series of deletions and mutations starting with a 1777 bp fragment immediately upstream of the start codon of MTT5. As a reporter gene we used the previously tested IAG52B surface antigen from the protozoan fish parasite Ichthyophthirius multifiliis. The results suggest that a region spanning between -300 bp and -274 bp, dubbed Tetrahymena thermophila Cadmium-Response-Element (TtCdRE), is necessary to elicit high-level expression of the transgene following induction with cadmium. This is the first demonstration by in vivo analyses of a regulatory element essential for Cd-mediated control of protozoan metallothionein gene expression, where the sequence GATA appears to be involved.


Subject(s)
Metallothionein/biosynthesis , Metallothionein/genetics , Protozoan Proteins/genetics , Regulatory Sequences, Nucleic Acid , Tetrahymena thermophila/genetics , Animals , Antigens, Protozoan/biosynthesis , Antigens, Protozoan/genetics , Binding Sites , Cadmium/metabolism , Gene Expression Regulation , Genes, Reporter , Sequence Deletion , Tetrahymena thermophila/physiology
SELECTION OF CITATIONS
SEARCH DETAIL