Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 34(13): R611-R612, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981421

ABSTRACT

Tulin et al. introduce Chlamydomonas, a unicellular green alga commonly used as a microbial reference system for plants and animals.


Subject(s)
Chlamydomonas , Chlamydomonas/physiology
2.
Microbiol Mol Biol Rev ; 86(1): e0016521, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35138122

ABSTRACT

Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.


Subject(s)
Chemotaxis , Saccharomyces cerevisiae Proteins , Cell Communication , Cell Fusion , Pheromones/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Mol Biol Cell ; 32(10): 1048-1063, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33689470

ABSTRACT

Yeast decode pheromone gradients to locate mating partners, providing a model for chemotropism. How yeast polarize toward a single partner in crowded environments is unclear. Initially, cells often polarize in unproductive directions, but then they relocate the polarity site until two partners' polarity sites align, whereupon the cells "commit" to each other by stabilizing polarity to promote fusion. Here we address the role of the early mobile polarity sites. We found that commitment by either partner failed if just one partner was defective in generating, orienting, or stabilizing its mobile polarity sites. Mobile polarity sites were enriched for pheromone receptors and G proteins, and we suggest that such sites engage in an exploratory search of the local pheromone landscape, stabilizing only when they detect elevated pheromone levels. Mobile polarity sites were also enriched for pheromone secretion factors, and simulations suggest that only focal secretion at polarity sites would produce high pheromone concentrations at the partner's polarity site, triggering commitment.


Subject(s)
Cell Polarity/physiology , Saccharomyces cerevisiae/physiology , Mating Factor/physiology , Secretory Pathway , Tropism
4.
Mol Biol Cell ; 32(8): 638-644, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33596113

ABSTRACT

Haploid cells of the budding yeast Saccharomyces cerevisiae communicate using secreted pheromones and mate to form diploid zygotes. Mating is monogamous, resulting in the fusion of precisely one cell of each mating type. Monogamous mating in crowded conditions, where cells have access to more than one potential partner, raises the question of how multiple-mating outcomes are prevented. Here we identify mutants capable of mating with multiple partners, revealing the mechanisms that ensure monogamous mating. Before fusion, cells develop polarity foci oriented toward potential partners. Competition between these polarity foci within each cell leads to disassembly of all but one focus, thus favoring a single fusion event. Fusion promotes the formation of heterodimeric complexes between subunits that are uniquely expressed in each mating type. One complex shuts off haploid-specific gene expression, and the other shuts off the ability to respond to pheromone. Zygotes able to form either complex remain monogamous, but zygotes lacking both can re-mate.


Subject(s)
Mating Factor/metabolism , Saccharomyces cerevisiae/metabolism , Zygote/metabolism , Diploidy , Genes, Fungal/genetics , Haploidy , Mating Factor/physiology , Pheromones/metabolism , Reproduction/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/genetics
5.
PLoS Biol ; 17(10): e3000484, 2019 10.
Article in English | MEDLINE | ID: mdl-31622333

ABSTRACT

Accurate detection of extracellular chemical gradients is essential for many cellular behaviors. Gradient sensing is challenging for small cells, which can experience little difference in ligand concentrations on the up-gradient and down-gradient sides of the cell. Nevertheless, the tiny cells of the yeast Saccharomyces cerevisiae reliably decode gradients of extracellular pheromones to find their mates. By imaging the behavior of polarity factors and pheromone receptors, we quantified the accuracy of initial polarization during mating encounters. We found that cells bias the orientation of initial polarity up-gradient, even though they have unevenly distributed receptors. Uneven receptor density means that the gradient of ligand-bound receptors does not accurately reflect the external pheromone gradient. Nevertheless, yeast cells appear to avoid being misled by responding to the fraction of occupied receptors rather than simply the concentration of ligand-bound receptors. Such ratiometric sensing also serves to amplify the gradient of active G protein. However, this process is quite error-prone, and initial errors are corrected during a subsequent indecisive phase in which polarity clusters exhibit erratic mobile behavior.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal , Pheromones/metabolism , Saccharomyces cerevisiae/genetics , Signal Transduction/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Receptors, Mating Factor/genetics , Receptors, Mating Factor/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/genetics , cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/metabolism
6.
Brain Lang ; 113(3): 113-23, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20399492

ABSTRACT

To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall, several regions showed that greater gray and white matter volume/integrity measures were associated with better task performance. Left peri-Sylvian language regions and their right-hemisphere counterparts, plus left mid-frontal gyrus correlated with accuracy and/or negatively with response time (RT) on the naming tests. Fractional anisotropy maps derived from DTI showed robust positive correlations with ANT accuracy bilaterally in the temporal lobe and in right middle frontal lobe, as well as negative correlations with BNT RT, bilaterally, in the white matter within middle and inferior temporal lobes. We conclude that those older adults with relatively better naming skills can rely on right-hemisphere peri-Sylvian and mid-frontal regions and pathways, in conjunction with left-hemisphere peri-Sylvian and mid-frontal regions, to achieve their success.


Subject(s)
Aging/pathology , Aging/physiology , Brain/pathology , Brain/physiology , Functional Laterality , Language , Aged , Anisotropy , Brain Mapping , Diffusion Tensor Imaging , Female , Humans , Language Tests , Magnetic Resonance Imaging , Male , Mental Processes/physiology , Middle Aged , Organ Size , Pattern Recognition, Visual/physiology , Reaction Time , Speech/physiology
SELECTION OF CITATIONS
SEARCH DETAIL