Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
2.
J Neurotrauma ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38482809

ABSTRACT

Neurophysiological diaschisis presents in traumatic brain injury (TBI) as functional impairment distant to the lesion site caused by axonal neuroexcitation and deafferentation. Diaschisis studies in TBI models have evaluated acute phase functional and microstructural changes. Here, in vivo biochemical changes and cerebral blood flow (CBF) dynamics following TBI are studied with magnetic resonance. Behavioral assessments, magnetic resonance spectroscopy (MRS), and CBF measurements on rats followed cortical impact TBI. Data were acquired pre-TBI and 1-3 h, 2-days, 7-days, and 14-days post-TBI. MRS was performed on the ipsilateral and contralateral sides in the cortex, striatum, and thalamus. Metabolites measured by MRS included N-acetyl aspartate (NAA), aspartate (Asp), lactate (Lac), glutathione (GSH), and glutamate (Glu). Lesion volume expanded for 2 days post-TBI and then decreased. Ipsilateral CBF dropped acutely versus baseline on both sides (-62% ipsilateral, -48% contralateral, p < 0.05) but then recovered in cortex, with similar changes in ipsilateral striatum. Metabolic changes versus baseline included increased Asp (+640% by Day 7 post-TBI, p < 0.05) and Lac (+140% on Day 2 post-TBI, p < 0.05) in ipsilateral cortex, while GSH (-67% acutely, p < 0.05) and NAA decreased (-50% on Day 2, p < 0.05). In contralateral cortex Lac decreased (-73% acutely, p < 0.05). Analysis of variance showed significance for Side (p < 0.05), Time after TBI (p < 0.05), and interactions (p < 0.005) for Asp, GSH, Lac, and NAA. Transient decreases of GSH (-30%, p < 0.05, acutely) and NAA (-23% on Day 2, p < 0.05) occurred in ipsilateral striatum with reduced GSH (-42%, p < 0.005, acutely) in the contralateral striatum. GSH was decreased in ipsilateral thalamus (-59% ipsilateral on Day 2, p < 0.05). Delayed increases of total choline were seen in the contralateral thalamus were noted as well (+21% on Day 7 post-TBI, p < 0.05). Both CBF and neurometabolite concentration changes occurred remotely from the TBI site, both ipsilaterally and contralaterally. Decreased Lac levels on the contralateral cortex following TBI may be indicative of reduced anaerobic metabolism during the acute phase. The timing and locations of the changes suggest excitatory and inhibitory signaling processes are affecting post-TBI metabolic fluctuations.

3.
J Magn Reson Imaging ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240167

ABSTRACT

BACKGROUND: Intravoxel incoherent motion (IVIM) diffusion weighted MRI (DWI) has potential for evaluating hepatic fibrosis but image acquisition technique influence on diffusion parameter estimation bears investigation. PURPOSE: To minimize variability and maximize repeatably in abdominal DWI in terms of IVIM parameter estimates. STUDY TYPE: Prospective test-retest and image quality comparison. SUBJECTS: Healthy volunteers (3F/7M, 29.9 ± 12.9 years) and Family Study subjects (18F/12M, 51.7 ± 16.7 years), without and with liver steatosis. FIELD STRENGTH/SEQUENCE: Abdominal single-shot echo-planar imaging (EPI) and simultaneous multi-slice (SMS) DWI sequences with respiratory triggering (RT), breath-holding (BH), and navigator echo (NE) at 3 Tesla. ASSESSMENT: SMS-BH, EPI-NE, and SMS-RT data from twice-scanned healthy volunteers were analyzed using 6 × b-values (0-800 s⋅mm-2 ) and lower (LO) and higher (HI) b-value ranges. Family Study subjects were scanned using SMS and standard EPI sequences. The biexponential IVIM model was used to estimate fast-diffusion coefficient (Df ), fraction of fast diffusion (f), and slow-diffusion coefficient (Ds ). Scan time, estimated signal-to-noise ratio (eSNR), eSNR per acquisition, and distortion ratio were compared. STATISTICAL TESTS: Coefficients of variation (CoV) and Bland Altman analyses were performed for test-retest repeatability. Interclass correlation coefficient (ICC) assessed interobserver agreement with P < 0.05 deemed significant. RESULTS: Within-subject CoVs among volunteers (N = 10) for f and Ds were lowest in EPI-NE-LO (11.6%) and SMS-RT-HI (11.1%). Inter-observer ICCs for f and Ds were highest for EPI-NE-LO (0.63) and SMS-RT-LO (0.76). Df could not be estimated for most subjects. Estimated eSNR (EPI = 21.9, SMS = 4.7) and eSNR time (EPI = 6.7, SMS = 16.6) were greater for SMS, with less distortion in the liver region (DR-PE: EPI = 23.6, SMS = 13.1). DATA CONCLUSION: Simultaneous multislice acquisitions had significantly less variability and higher ICCs of Ds , higher eSNR, less distortion, and reduced scan time compared to EPI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

4.
J Alzheimers Dis ; 96(3): 1267-1283, 2023.
Article in English | MEDLINE | ID: mdl-37955086

ABSTRACT

BACKGROUND: Neuroimaging bears the promise of providing new biomarkers that could refine the diagnosis of dementia. Still, obtaining the pathology data required to validate the relationship between neuroimaging markers and neurological changes is challenging. Existing data repositories are focused on a single pathology, are too small, or do not precisely match neuroimaging and pathology findings. OBJECTIVE: The new data repository introduced in this work, the South Texas Alzheimer's Disease research center repository, was designed to address these limitations. Our repository covers a broad diversity of dementias, spans a wide age range, and was specifically designed to draw exact correspondences between neuroimaging and pathology data. METHODS: Using four different MRI sequences, we are reaching a sample size that allows for validating multimodal neuroimaging biomarkers and studying comorbid conditions. Our imaging protocol was designed to capture markers of cerebrovascular disease and related lesions. Quantification of these lesions is currently underway with MRI-guided histopathological examination. RESULTS: A total of 139 postmortem brains (70 females) with mean age of 77.9 years were collected, with 71 brains fully analyzed. Of these, only 3% showed evidence of AD-only pathology and 76% had high prevalence of multiple pathologies contributing to clinical diagnosis. CONCLUSION: This repository has a significant (and increasing) sample size consisting of a wide range of neurodegenerative disorders and employs advanced imaging protocols and MRI-guided histopathological analysis to help disentangle the effects of comorbid disorders to refine diagnosis, prognosis and better understand neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Female , Humans , Aged , Alzheimer Disease/pathology , Texas/epidemiology , Brain/diagnostic imaging , Brain/pathology , Neuroimaging/methods , Magnetic Resonance Imaging , Neurodegenerative Diseases/pathology , Biomarkers
5.
bioRxiv ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38014295

ABSTRACT

Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid ß-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.

6.
Neurobiol Aging ; 132: 109-119, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797463

ABSTRACT

The prefrontal cortex (PFC) has been implicated as a key brain region responsible for age-related cognitive decline. Little is known about aging-related molecular changes in PFC that may mediate these effects. To date, no studies have used untargeted discovery methods with integrated analyses to determine PFC molecular changes in healthy female primates. We quantified PFC changes associated with healthy aging in female baboons by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. Our integrated omics approach using unbiased weighted gene co-expression network analysis to integrate data and treat age as a continuous variable, revealed highly interconnected known and novel pathways associated with PFC aging. We found Gamma-aminobutyric acid (GABA) tissue content associated with these signaling pathways, providing 1 potential biomarker to assess PFC changes with age. These highly coordinated pathway changes during aging may represent early steps for aging-related decline in PFC functions, such as learning and memory, and provide potential biomarkers to assess cognitive status in humans.


Subject(s)
Cognitive Dysfunction , Multiomics , Humans , Animals , Female , Aging/psychology , Signal Transduction/genetics , Prefrontal Cortex/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism
7.
Diagnostics (Basel) ; 13(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37174981

ABSTRACT

A wireless, wearable Doppler ultrasound offers a new paradigm for linking physiology to resuscitation medicine. To this end, the image analysis of simultaneously-acquired venous and arterial Doppler spectrograms attained by wearable ultrasound represents a new source of hemodynamic data. Previous investigators have reported a direct relationship between the central venous pressure (CVP) and the ratio of the internal jugular-to-common carotid artery diameters. Because Doppler power is directly related to the number of red cell scatterers within a vessel, we hypothesized that (1) the ratio of internal jugular-to-carotid artery Doppler power (V/APOWER) would be a surrogate for the ratio of the vascular areas of these two vessels and (2) the V/APOWER would track the anticipated CVP change during simulated hemorrhage and resuscitation. To illustrate this proof-of-principle, we compared the change in V/APOWER obtained via a wireless, wearable Doppler ultrasound to B-mode ultrasound images during a head-down tilt. Additionally, we elucidated the change in the V/APOWER during simulated hemorrhage and transfusion via lower body negative pressure (LBNP) and release. With these Interesting Images, we show that the Doppler V/APOWER ratio qualitatively tracks anticipated changes in CVP (e.g., cardiac preload) which is promising for both diagnosis and management of hemodynamic unrest.

8.
Crit Care Explor ; 5(5): e0914, 2023 May.
Article in English | MEDLINE | ID: mdl-37168690

ABSTRACT

Measuring fluid responsiveness is important in the management of critically ill patients, with a 10-15% change in cardiac output typically being used to indicate "fluid responsiveness." Ideally, these changes would be measured noninvasively and peripherally. The aim of this study was to determine how the common carotid artery (CCA) maximum velocity changes with total circulatory flow when confounding factors are mitigated and determine a value for CCA maximum velocity corresponding to a 10% change in total circulatory flow. DESIGN: Prospective observational pilot study. SETTING: Patients undergoing elective, on-pump coronary artery bypass grafting (CABG) surgery. PATIENTS: Fourteen patients were referred for elective coronary artery bypass grafting surgery. INTERVENTIONS: Cardiopulmonary bypass (CPB) pump flow changes during surgery, as chosen by the perfusionist. MEASUREMENTS: A hands-free, wearable Doppler patch was used for CCA velocity measurements with the aim of preventing user errors in ultrasound measurements. Maximum CCA velocity was determined from the spectrogram acquired by the Doppler patch. CPB flow rates were recorded as displayed on the CPB console, and further measured from the peristaltic pulsation frequency visible on the recorded Doppler spectrograms. MAIN RESULTS: Changes in CCA maximum velocity tracked well with changes in CPB flow. On average, a 13.6% change in CCA maximum velocity was found to correspond to a 10% change in CPB flow rate. CONCLUSIONS: Changes in CCA velocity may be a useful surrogate for determining fluid responsiveness when user error can be mitigated.

9.
J Vis Exp ; (191)2023 01 20.
Article in English | MEDLINE | ID: mdl-36744770

ABSTRACT

A preload challenge (PC) is a clinical maneuver that, first, increases the cardiac filling (i.e., preload) and, second, calculates the change in cardiac output. Fundamentally, a PC is a bedside approach for testing the Frank-Starling-Sarnoff (i.e., "cardiac function") curve. Normally, this curve has a steep slope such that a small change in the cardiac preload generates a large change in the stroke volume (SV) or cardiac output. However, in various disease states, the slope of this relationship flattens such that increasing the volume into the heart leads to little rise in the SV. In this pathological scenario, additional cardiac preload (e.g., intravenous fluid) is unlikely to be physiologically effective and could lead to harm if organ congestion evolves. Therefore, inferring both the cardiac preload and output is clinically useful as it may guide intravenous (IV) fluid resuscitation. Accordingly, the goal of this protocol is to describe a method for contemporaneously tracking the surrogates of cardiac preload and output using a novel, wireless, wearable ultrasound during a well-validated preload challenge.


Subject(s)
Heart , Veins , Cardiac Output/physiology , Stroke Volume/physiology , Heart/diagnostic imaging , Heart/physiology , Ultrasonography, Doppler
10.
Diabetes Obes Metab ; 25(2): 426-434, 2023 02.
Article in English | MEDLINE | ID: mdl-36204991

ABSTRACT

AIMS: To examine the effect of pioglitazone on epicardial (EAT) and paracardial adipose tissue (PAT) and measures of diastolic function and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). METHODS: Twelve patients with T2DM without clinically manifest cardiovascular disease and 12 subjects with normal glucose tolerance (NGT) underwent cardiac magnetic resonance imaging to quantitate EAT and PAT and diastolic function before and after pioglitazone treatment for 24 weeks. Whole-body insulin sensitivity was measured with a euglycaemic insulin clamp and the Matsuda Index (oral glucose tolerance test). RESULTS: Pioglitazone reduced glycated haemoglobin by 0.9% (P < 0.05), increased HDL cholesterol by 7% (P < 0.05), reduced triacylglycerol by 42% (P < 0.01) and increased whole-body insulin-stimulated glucose uptake by 71% (P < 0.01) and Matsuda Index by 100% (P < 0.01). In patients with T2DM, EAT (P < 0.01) and PAT (P < 0.01) areas were greater compared with subjects with NGT, and decreased by 9% (P = 0.03) and 9% (P = 0.09), respectively, after pioglitazone treatment. Transmitral E/A flow rate and peak left ventricular flow rate (PLVFR) were reduced in T2DM versus NGT (P < 0.01) and increased following pioglitazone treatment (P < 0.01-0.05). At baseline normalized PLVFR inversely correlated with EAT (r = -0.45, P = 0.03) but not PAT (r = -0.29, P = 0.16). E/A was significantly and inversely correlated with EAT (r = -0.55, P = 0.006) and PAT (r = -0.40, P = 0.05). EAT and PAT were inversely correlated with whole-body insulin-stimulated glucose uptake (r = -0.68, P < 0.001) and with Matsuda Index (r = 0.99, P < 0.002). CONCLUSION: Pioglitazone reduced EAT and PAT areas and improved left ventricular (LV) diastolic function in T2DM. EAT and PAT are inversely correlated (PAT less strongly) with LV diastolic function and both EAT and PAT are inversely correlated with measures of insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Thiazolidinediones , Humans , Pioglitazone/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Blood Glucose , Insulin , Pericardium/diagnostic imaging , Pericardium/pathology , Glucose , Adipose Tissue/pathology
11.
Article in English | MEDLINE | ID: mdl-36097168

ABSTRACT

BACKGROUND: Protocol-based active surveillance (AS) biopsies have led to poor compliance. To move to risk-based protocols, more accurate imaging biomarkers are needed to predict upgrading on AS prostate biopsy. We compared restriction spectrum imaging (RSI-MRI) generated signal maps as a biomarker to other available non-invasive biomarkers to predict upgrading or reclassification on an AS biopsy. METHODS: We prospectively enrolled men on prostate cancer AS undergoing repeat biopsy from January 2016 to June 2019 to obtain an MRI and biomarkers to predict upgrading. Subjects underwent a prostate multiparametric MRI and a short duration, diffusion-weighted enhanced MRI called RSI to generate a restricted signal map along with evaluation of 30 biomarkers (14 clinico-epidemiologic features, 9 molecular biomarkers, and 7 radiologic-associated features). Our primary outcome was upgrading or reclassification on subsequent AS prostate biopsy. Statistical analysis included operating characteristic improvement using AUROC and AUPRC. RESULTS: The individual biomarker with the highest area under the receiver operator characteristic curve (AUC) was RSI-MRI (AUC = 0.84; 95% CI: 0.71-0.96). The best non-imaging biomarker was prostate volume-corrected Prostate Health Index density (PHI, AUC = 0.68; 95% CI: 0.53-0.82). Non-imaging biomarkers had a negligible effect on predicting upgrading at the next biopsy but did improve predictions of overall time to progression in AS. CONCLUSIONS: RSI-MRI, PIRADS, and PHI could improve the predictive ability to detect upgrading in AS. The strongest predictor of clinically significant prostate cancer on AS biopsy was RSI-MRI signal output.

12.
Front Cardiovasc Med ; 9: 889985, 2022.
Article in English | MEDLINE | ID: mdl-35734277

ABSTRACT

Introduction: Cardiovascular disease (CVD) is the leading cause of mortality worldwide and is the leading cause of death in the US. Lipid dysregulation is a well-known precursor to metabolic diseases, including CVD. There is a growing body of literature that suggests MRI-derived epicardial fat volume, or epicardial adipose tissue (EAT) volume, is linked to the development of coronary artery disease. Interestingly, epicardial fat is also actively involved in lipid and energy homeostasis, with epicardial adipose tissue having a greater capacity for release and uptake of free fatty acids. However, there is a scarcity of knowledge on the influence of plasma lipids on EAT volume. Aim: The focus of this study is on the identification of novel lipidomic species associated with CMRI-derived measures of epicardial fat in Mexican American individuals. Methods: We performed lipidomic profiling on 200 Mexican American individuals. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing measures of 799 unique species from circulating plasma samples. Because of our extended pedigree design, we utilized a standard quantitative genetic linear mixed model analysis to determine whether lipids were correlated with EAT by formally testing for association between each lipid species and the CMRI epicardial fat phenotype. Results: After correction for multiple testing using the FDR approach, we identified 135 lipid species showing significant association with epicardial fat. Of those, 131 lipid species were positively correlated with EAT, where increased circulating lipid levels were correlated with increased epicardial fat. Interestingly, the top 10 lipid species associated with an increased epicardial fat volume were from the deoxyceramide (Cer(m)) and triacylglycerol (TG) families. Deoxyceramides are atypical and neurotoxic sphingolipids. Triacylglycerols are an abundant lipid class and comprise the bulk of storage fat in tissues. Pathologically elevated TG and Cer(m) levels are related to CVD risk and, in our study, to EAT volume. Conclusion: Our results indicate that specific lipid abnormalities such as enriched saturated triacylglycerols and the presence of toxic ceramides Cer(m) in plasma of our individuals could precede CVD with increased EAT volume.

13.
JMIR Res Protoc ; 11(4): e26827, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363152

ABSTRACT

BACKGROUND: In breast cancer survivors, chemotherapy-induced muscle loss has been shown to be attenuated with structured resistance exercise. Creatine supplementation can increase bioenergetics in skeletal muscle, which helps to improve overall strength and endurance and reduce muscular fatigue. Therefore, we hypothesize that adding creatinine supplementation to exercise training will accelerate improvements in strength, endurance, and bioenergetics in breast cancer survivors. OBJECTIVE: The primary objective is to determine the effects of combining creatine supplementation with exercise on modulating strength and physical function in breast cancer survivors by comparing these effects to those of exercise alone. The secondary objectives are to determine if creatine supplementation and exercise can increase the intramuscular storage of creatine and improve body composition by comparing this intervention to exercise alone. METHODS: We aim to test our hypothesis by conducting an open-label randomized controlled trial of 30 breast cancer survivors who have completed chemotherapy within 6 months of enrollment. Eligible participants will be equally randomized (1:1) to either a creatine and exercise group or an exercise-only group for this 12-week intervention. Individuals who are randomized to receive creatine will be initially dosed at 20 g per day for 7 days to boost the availability of creatine systemically. Thereafter, the dose will be reduced to 5 g per day for maintenance throughout the duration of the 12-week protocol. All participants will engage in 3 center-based exercise sessions, which will involve completing 3 sets of 8 to 12 repetitions on chest press, leg press, seated row, shoulder press, leg extension, and leg curl machines. The primary outcomes will include changes in strength, body composition, and physical function in breast cancer survivors. The secondary outcomes will be intramuscular concentrations of creatine and adenosine triphosphate in the vastus lateralis, midthigh cross-sectional area, and quality of life. RESULTS: As of October 2021, a total of 9 patients have been enrolled into the study. No unexpected adverse events have been reported. CONCLUSIONS: Creatine is being studied as a potential agent for improving strength, endurance, and bioenergetics in breast cancer survivors following chemotherapy. The findings from our trial may have future implications for supporting breast cancer survivors in reversing the muscle loss experienced during chemotherapy and improving their physical function and quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT04207359; https://clinicaltrials.gov/ct2/show/NCT04207359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/26827.

14.
Diabetes Obes Metab ; 24(5): 899-907, 2022 05.
Article in English | MEDLINE | ID: mdl-35014145

ABSTRACT

AIM: To compare the efficacy of triple therapy (metformin/exenatide/pioglitazone) versus stepwise conventional therapy (metformin → glipizide → glargine insulin) on liver fat content and hepatic fibrosis in newly diagnosed, drug-naïve patients with type 2 diabetes. METHODS: Sixty-eight patients completed the 6-year follow-up and had an end-of-study (EOS) FibroScan to provide measures of steatosis (controlled attenuation parameter [CAP] in dB/m) and fibrosis (liver stiffness measurement [LSM] in kPa); 59 had magnetic resonance imaging-proton density fat fraction (MRI-PDFF) to measure liver fat. RESULTS: At EOS, HbA1c was 6.8% and 6.0% in triple and conventional therapy groups, respectively (P = .0006). Twenty-seven of 39 subjects (69%) receiving conventional therapy had grade 2/3 steatosis (CAP, FibroScan) versus nine of 29 (31%) in triple therapy (P = .0003). Ten of 39 (26%) subjects receiving conventional therapy had stage 3/4 fibrosis (LSM) versus two of 29 (7%) in triple therapy (P = .04). Conventional therapy subjects had more liver fat (MRI-PDFF) than triple therapy (12.9% vs. 8.8%, P = .03). The severity of steatosis (CAP) (r = 0.42, P < .001) and fibrosis (LSM) (r = -0.48, P < .001) correlated inversely with the Matsuda Index of insulin sensitivity, but not with percentage body fat. Aspartate aminotransferase (AST) to Platelet Ratio Index (APRI), non-alcoholic fatty liver disease fibrosis score (NFS), plasma AST, and alanine aminotransferase (ALT) all decreased significantly with triple therapy, but only the decrease in plasma AST and ALT correlated with the severity of steatosis and fibrosis at EOS. CONCLUSIONS: At EOS, subjects with type 2 diabetes treated with triple therapy had less hepatic steatosis and fibrosis versus conventional therapy; the severity of hepatic steatosis and fibrosis were both strongly and inversely correlated with insulin resistance; and changes in liver fibrosis scores (APRI, NFS, Fibrosis-4, and AST/ALT ratio) have limited value in predicting response to therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Non-alcoholic Fatty Liver Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Exenatide , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/drug therapy , Liver Cirrhosis/epidemiology , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/drug therapy , Pioglitazone/therapeutic use , Prevalence
15.
Bioengineering (Basel) ; 8(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34940356

ABSTRACT

BACKGROUND: A novel, wireless, ultrasound biosensor that adheres to the neck and measures real-time Doppler of the carotid artery may be a useful functional hemodynamic monitor. A unique experimental set-up during elective coronary artery bypass surgery is described as a means to compare the wearable Doppler to trans-esophageal echocardiography (TEE). METHODS: A total of two representative patients were studied at baseline and during Trendelenburg position. Carotid Doppler spectra from the wearable ultrasound and TEE were synchronously captured. Areas under the receiver operator curve (AUROC) were performed to assess the accuracy of changing common carotid artery velocity time integral (ccVTI∆) at detecting a clinically significant change in stroke volume (SV∆). RESULTS: Synchronously measuring and comparing Doppler spectra from the wearable ultrasound and TEE is feasible during Trendelenburg positioning. In two representative cardiac surgical patients, the ccVTI∆ accurately detected a clinically significant SV∆ with AUROCs of 0.89, 0.91, and 0.95 when single-beat, 3-consecutive beat and 10-consecutive beat averages were assessed, respectively. CONCLUSION: In this proof-of-principle research communication, a wearable Doppler ultrasound system is successfully compared to TEE. Preliminary data suggests that the diagnostic accuracy of carotid Doppler ultrasonography at detecting clinically significant SV∆ is enhanced by averaging more cardiac cycles.

16.
Comp Med ; 71(6): 460-465, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34711301

ABSTRACT

Nonhuman primates (NHP) are important translational models for cardiac aging. To assess progress in this research area and to provide a reference for other investigators, we identified papers indexed in PubMed to determine what species, ages, outcomes, treatments, and approaches have been studied. Since 1983, 33 studies of cardiac aging in NHP have been published. Of these, 27 used species of macaque, 6 baboon, 1 vervet, 1 orangutan, and 1 marmoset (some studies were multispecies). Common research approaches were echocardiography, ECG, and histology of the left ventricle. Only 10 studies performed sex-based analyses. The average age of the oldest macaque studied was 26 y. The reported mean lifespan of macaques in captivity is around 30 y. The age of the oldest baboon studied was 24 y. Baboons in captivity are reported to live on average to 21 y. Twelve studies took a "life course" approach, studying animals of a wide range of ages from less than or equal to 10 y through the late teens to thirties, and employing analyses designed to show change over time. Keeping NHP into old age is a major challenge for biomedical research. The ideal design is to start monitoring in early life and to track how cardiac structure and function change with age. Important issues for future research are an increased focus on life-course approaches, investment in existing life-course NHP cohorts, better reporting of study sample characteristics, more molecular studies to identify genetic risk factors and mechanisms, attention to sex as a biological variable, a move away from descriptive reports to mechanistic studies, development of biomarkers to predict disease risk, and exploration of interventions that are implemented early in life to prevent or delay age-related disease later in life. Reducing exposure to early life adversity, identifying early-life biomarkers of aging and age-related disease, and early treatment can contribute to longer health span.


Subject(s)
Aging , Biomedical Research , Animals , Callithrix , Macaca , Papio , Primates
17.
Sci Rep ; 11(1): 7632, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828310

ABSTRACT

Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.


Subject(s)
Glioblastoma/metabolism , Neoplasm Recurrence, Local/metabolism , Tumor Hypoxia/physiology , Adult , Aged , Bevacizumab/metabolism , Bevacizumab/therapeutic use , Biomarkers, Pharmacological , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Cerebral Blood Volume/physiology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Female , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Misonidazole/analogs & derivatives , Misonidazole/therapeutic use , Positron-Emission Tomography/methods , Progression-Free Survival , Young Adult
18.
J Urol ; 206(1): 44-51, 2021 07.
Article in English | MEDLINE | ID: mdl-33617334

ABSTRACT

PURPOSE: Restriction spectrum imaging-magnetic resonance imaging is a short duration enhanced diffusion-weighted technique that seeks to standardize sequences and predict upgrading. We test this technology for active surveillance biopsies. Our objective is to investigate the utility of restriction spectrum imaging-magnetic resonance imaging to improve upgrading detection in a prostate cancer active surveillance cohort. MATERIALS AND METHODS: We prospectively enrolled men on active surveillance undergoing repeat biopsy from January 2016 to June 2019. Subjects underwent prostate multiparametric magnetic resonance imaging and restriction spectrum imaging-magnetic resonance imaging reviewed by a urological radiologist for PI-RADS® scored lesions, followed by magnetic resonance imaging-guided prostate biopsy by a urologist. Restriction spectrum imaging-magnetic resonance imaging analysis with proprietary research software (CorTechs Labs, San Diego, California) generated a restricted signal map. We compared the restricted signal map and apparent diffusion coefficient values using T-test, ANOVA, and logistic regression analyses for prediction of upgrading. RESULTS: Of 123 enrolled men we identified 74 restriction spectrum imaging-magnetic resonance imaging regions of interest (targeted lesions) in 110 subjects, with 105 subjects completing biopsy. The restricted signal map was significant per PI-RADS score for true-positive lesion detection (mean difference 28, SD 0.7, p=0.001), and better than apparent diffusion coefficient (mean difference -15, SD 55, p=0.6). Restriction spectrum imaging generated restricted signal map values >50 improved sensitivity, specificity, positive predictive value and negative predictive value (81.0%, 81.8%, 54.2% and 94.2%) over PI-RADS ≥3 (71.4%, 38.9%, 23.7% and 83.7%, respectively) for Gleason upgrading. Overall restriction spectrum imaging is able to improve the AUC of 0.70 (95% CI 0.49-0.92, p=0.03) to 0.90 (95% CI 0.82-0.98, p <0.001). CONCLUSIONS: Restriction spectrum imaging-magnetic resonance imaging enhances the standard PI-RADS system by providing a noninvasive radiological biomarker to predict upgrading in active surveillance.


Subject(s)
Diffusion Magnetic Resonance Imaging , Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms/diagnostic imaging , Watchful Waiting , Aged , Biopsy , Diffusion Magnetic Resonance Imaging/methods , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Prostatic Neoplasms/pathology , Sensitivity and Specificity
19.
J Dev Orig Health Dis ; 12(2): 153-167, 2021 04.
Article in English | MEDLINE | ID: mdl-32955011

ABSTRACT

Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.


Subject(s)
Biomedical Research/trends , Diagnostic Imaging/methods , Fetal Diseases/diagnosis , Fetus/pathology , Female , Fetal Diseases/diagnostic imaging , Fetus/diagnostic imaging , Humans , Pregnancy , Societies, Scientific
20.
J Dev Orig Health Dis ; 12(3): 349-353, 2021 06.
Article in English | MEDLINE | ID: mdl-32618548

ABSTRACT

Microvascular health is a main determinant of coronary blood flow reserve and myocardial vascular resistance. Extracardiac capillary abnormality has been reported in subjects at increased coronary heart disease risk, such as prehypertension, hypertension, diabetes, hyperlipidemia, and atherosclerosis. We have reported cardiovascular dysfunction in a cohort of maternal nutrient reduction (MNR)-induced intrauterine growth restriction (IUGR) baboon offspring. Here we test the hypothesis that there is oral capillary rarefaction associated with MNR-induced IUGR. Capillary density was quantified using in vivo high-power capillaroscopy on seven middle-aged (~10.7 yr; human equivalent ~40 yr) male IUGR baboons and seven male age-matched controls in the lateral buccal and inferior labial mucosa. While no difference was found between groups in either area by fraction area or optical density for these vascular beds derived from fetal preductal vessels, further studies are needed on post-ductal vascular beds, retina, and function.


Subject(s)
Capillaries , Fetal Growth Retardation , Papio/growth & development , Prenatal Exposure Delayed Effects/pathology , Animals , Female , Male , Malnutrition , Maternal Nutritional Physiological Phenomena , Mouth Mucosa/blood supply , Mouth Mucosa/pathology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...