Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters











Publication year range
1.
J Phys Chem B ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303305

ABSTRACT

Understanding membrane charge transport processes, including the actions of ion channels, pumps, carriers, and membrane-active peptides, requires a description of the electrostatics of the lipid bilayer. We have simulated a library of different lipid chemistries to reveal the impact of the headgroup, glycerol backbone, and hydrocarbon chains on the membrane dipole potential. We found a strong dependence of the potential on lipid packing, but this was not caused by the packing of lipid polar components, due to cancellation of their electric fields by electrolyte. In contrast, lipid tail contributions were determined by area per lipid, arising from two countering effects. Increased area per lipid leads to chain tilting that increases methylene dipole projections to strengthen the electric field within the bilayer, while at the same time decreasing the electric field from terminal methyl groups. Moreover, electric fields from some nonterminal groups and the terminal methyl group can extend beyond the bilayer center and be canceled by the opposing leaflet. This interleaflet field annulment explains the experimental reduction in dipole potential for unsaturated and branched lipid bilayers, by as much as ∼200 mV, as well as experiments that substitute chain carbons with sulfur. Replacing ester with ether groups (eliminating two carbonyl groups) causes a significant reduction in potential, also by ∼200 mV, in agreement with experiment. We show that the effect can be largely attributed to the loss of aligned water molecules in the glycerol backbone region, lowering the potential inside the bilayer core. When only one of the two carbonyls is removed (using a hybrid ester-ether lipid or a single-chain lipid), most of this reduction in potential was lost, with the single carbonyl group able to maintain full hydration in the interfacial region. While headgroup chemistry can have a major effect (by as much as ±100 mV relative to phosphatidylcholine), anionic headgroups either decrease or increase the dipole potential, with the variation involving perturbation in hydrogen-bonded water molecules and changes in packing of lipid tails. Overall, these results suggest that membrane electrostatics are dominated by aligned water molecules at the polar-hydrocarbon interface and, surprisingly, by the charge distribution of the nonpolar lipid tails, and not the packing of headgroup and glycerol carbonyl dipoles.

2.
Explor Res Clin Soc Pharm ; 15: 100469, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39035022

ABSTRACT

Digital healthcare has rapidly evolved during and in the post-COVID pandemic era, expanding the roles and responsibilities of community pharmacists. Services like telepharmacy, e-prescriptions, remote medication therapy management, and digital monitoring of chronic conditions, have evolved into everyday routine pharmacy practices. Pharmacists are at the forefront and the most accessible healthcare professionals for patients and are increasingly pivotal in providing comprehensive patient care, including digital patient care services. To ensure that future generations of pharmacists are digitally competent, it is crucial that digital health education is provided to pharmacy students. Furthermore, fostering high-quality multidisciplinary research, particularly in collaboration with medicine and other health disciplines, is essential for advancing the digital health skills of the future pharmacy workforce. Despite the growing use of digital health technologies, there are significant between-country differences in digital health education, the clinical settings in which digital health technologies are used, and their implementation in day-to-day practice. This commentary summarizes key insights from the International Digital Health Workshop held at the University of Sydney in November 2023. To help ensure pharmacists are included as participants in future digital health research, recent advances in digital health education and interprofessional research projects across three universities from far-off world regions were presented. Participants discussed a possible collaborative, interprofessional, and international research project on chronic disease prevention using digital health technologies. The need for interdisciplinary digital health curricula was highlighted in the workshop discussions, specifically tailored to address the knowledge requirements of pharmacists and other healthcare professionals.

3.
Biophys Rev ; 16(2): 145-148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737205

ABSTRACT

This article of the continuing "Biophysical Reviews Meet the Editors Series" introduces Ronald Clarke, biophysical chemist, member of the Biophysical Reviews editorial board and current Secretary-General of the International Union of Pure and Applied Biophysics (IUPAB).

4.
J Membr Biol ; 257(1-2): 79-89, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436710

ABSTRACT

The gastric H+,K+-ATPase is an integral membrane protein which derives energy from the hydrolysis of ATP to transport H+ ions from the parietal cells of the gastric mucosa into the stomach in exchange for K+ ions. It is responsible for the acidic environment of the stomach, which is essential for digestion. Acid secretion is regulated by the recruitment of the H+,K+-ATPase from intracellular stores into the plasma membrane on the ingestion of food. The similar amino acid sequences of the lysine-rich N-termini α-subunits of the H+,K+- and Na+,K+-ATPases, suggests similar acute regulation mechanisms, specifically, an electrostatic switch mechanism involving an interaction of the N-terminal tail with the surface of the surrounding membrane and a modulation of the interaction via regulatory phosphorylation by protein kinases. From a consideration of sequence alignment of the H+,K+-ATPase and an analysis of its coevolution with protein kinase C and kinases of the Src family, the evidence points towards a phosphorylation of tyrosine-7 of the N-terminus by either Lck or Yes in all vertebrates except cartilaginous fish. The results obtained will guide and focus future experimental research.


Subject(s)
Sodium-Potassium-Exchanging ATPase , Stomach , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Biological Transport , H(+)-K(+)-Exchanging ATPase/chemistry , Ions/metabolism
6.
Biophys Rev ; 15(1): 13-15, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36909959
8.
Biophys Rev ; 15(6): 1967-1985, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38192346

ABSTRACT

Lipid-protein interactions are normally classified as either specific or general. Specific interactions refer to lipid binding to specific binding sites within a membrane protein, thereby modulating the protein's thermal stability or kinetics. General interactions refer to indirect effects whereby lipids affect membrane proteins by modulating the membrane's physical properties, e.g., its fluidity, thickness, or dipole potential. It is not widely recognized that there is a third distinct type of lipid-protein interaction. Intrinsically disordered N- or C-termini of membrane proteins can interact directly but nonspecifically with the surrounding membrane. Many peripheral membrane proteins are held to the cytoplasmic surface of the plasma membrane via a cooperative combination of two forces: hydrophobic anchoring and electrostatic attraction. An acyl chain, e.g., myristoyl, added post-translationally to one of the protein's termini inserts itself into the lipid matrix and helps hold peripheral membrane proteins onto the membrane. Electrostatic attraction occurs between positively charged basic amino acid residues (lysine and arginine) on one of the protein's terminal tails and negatively charged phospholipid head groups, such as phosphatidylserine. Phosphorylation of either serine or tyrosine residues on the terminal tails via regulatory protein kinases allows for an electrostatic switch mechanism to control trafficking of the protein. Kinase action reduces the positive charge on the protein's tail, weakening the electrostatic attraction and releasing the protein from the membrane. A similar mechanism regulates many integral membrane proteins, but here only electrostatic interactions are involved, and the electrostatic switch modulates protein activity by altering the stabilities of different protein conformational states.

9.
Proc Natl Acad Sci U S A ; 119(27): e2123516119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35759668

ABSTRACT

Sterkfontein is the most prolific single source of Australopithecus fossils, the vast majority of which were recovered from Member 4, a cave breccia now exposed by erosion and weathering at the landscape surface. A few other Australopithecus fossils, including the StW 573 skeleton, come from subterranean deposits [T. C. Partridge et al., Science 300, 607-612 (2003); R. J. Clarke, K. Kuman, J. Hum. Evol. 134, 102634 (2019)]. Here, we report a cosmogenic nuclide isochron burial date of 3.41 ± 0.11 million years (My) within the lower middle part of Member 4, and simple burial dates of 3.49 ± 0.19 My in the upper middle part of Member 4 and 3.61 ± 0.09 My in Jacovec Cavern. Together with a previously published isochron burial date of 3.67 ± 0.16 My for StW 573 [D. E. Granger et al., Nature 522, 85-88 (2015)], these results place nearly the entire Australopithecus assemblage at Sterkfontein in the mid-Pliocene, contemporaneous with Australopithecus afarensis in East Africa. Our ages for the fossil-bearing breccia in Member 4 are considerably older than the previous ages of ca. 2.1 to 2.6 My interpreted from flowstones associated with the same deposit. We show that these previously dated flowstones are stratigraphically intrusive within Member 4 and that they therefore underestimate the true age of the fossils.


Subject(s)
Biological Evolution , Hominidae , Animals , Caves , Cosmic Radiation , Fossils , Skeleton , South Africa
10.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613508

ABSTRACT

The Na+, K+-ATPase is an integral membrane protein which uses the energy of ATP hydrolysis to pump Na+ and K+ ions across the plasma membrane of all animal cells. It plays crucial roles in numerous physiological processes, such as cell volume regulation, nutrient reabsorption in the kidneys, nerve impulse transmission, and muscle contraction. Recent data suggest that it is regulated via an electrostatic switch mechanism involving the interaction of its lysine-rich N-terminus with the cytoplasmic surface of its surrounding lipid membrane, which can be modulated through the regulatory phosphorylation of the conserved serine and tyrosine residues on the protein's N-terminal tail. Prior data indicate that the kinases responsible for phosphorylation belong to the protein kinase C (PKC) and Src kinase families. To provide indications of which particular enzyme of these families might be responsible, we analysed them for evidence of coevolution via the mirror tree method, utilising coevolution as a marker for a functional interaction. The results obtained showed that the most likely kinase isoforms to interact with the Na+, K+-ATPase were the θ and η isoforms of PKC and the Src kinase itself. These theoretical results will guide the direction of future experimental studies.


Subject(s)
Sodium-Potassium-Exchanging ATPase , src-Family Kinases , Animals , Phosphorylation , Sodium-Potassium-Exchanging ATPase/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Protein Kinase C/metabolism , Ions/metabolism
14.
Faraday Discuss ; 232(0): 172-187, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34549220

ABSTRACT

Membrane protein structure and function are modulated via interactions with their lipid environment. This is particularly true for integral membrane pumps, the P-type ATPases. These ATPases play vital roles in cell physiology, where they are associated with the transport of cations and lipids, thereby generating and maintaining crucial (electro-)chemical potential gradients across the membrane. Several pumps (Na+, K+-ATPase, H+, K+-ATPase and the plasma membrane Ca2+-ATPase) which are located in the asymmetric animal plasma membrane have been found to possess polybasic (lysine-rich) domains on their cytoplasmic surfaces, which are thought to act as phosphatidylserine (PS) binding domains. In contrast, the sarcoplasmic reticulum Ca2+-ATPase, located within an intracellular organelle membrane, does not possess such a domain. Here we focus on the lysine-rich N-termini of the plasma-membrane-bound Na+, K+- and H+, K+-ATPases. Synthetic peptides corresponding to the N-termini of these proteins were found, via quartz crystal microbalance and circular dichroism measurements, to interact via an electrostatic interaction with PS-containing membranes, thereby undergoing an increase in helical or other secondary structure content. As well as influencing ion pumping activity, it is proposed that this interaction could provide a mechanism for sensing the lipid asymmetry of the plasma membrane, which changes drastically when a cell undergoes apoptosis, i.e. programmed cell death. Thus, polybasic regions of plasma membrane-bound ion pumps could potentially perform the function of a "death sensor", signalling to a cell to reduce pumping activity and save energy.


Subject(s)
P-type ATPases , Animals , Cell Membrane , Protein Structure, Secondary , Sodium
15.
J Hum Evol ; 156: 103000, 2021 07.
Article in English | MEDLINE | ID: mdl-34020297

ABSTRACT

The Early Pleistocene site of Swartkrans in South Africa's Cradle of Humankind World Heritage Site has been significant for our understanding of the evolution of both early Homo and Paranthropus, as well as the earliest archaeology of southern Africa. Previous attempts to improve a faunal age estimate of the earliest deposit, Member 1, had produced results obtained with uranium-lead dating (U-Pb) on flowstones and cosmogenic burial dating of quartz, which placed the entire member in the range of >1.7/1.8 Ma and <2.3 Ma. In 2014, two simple burial dates for the Lower Bank, the earliest unit within Member 1, narrowed its age to between ca. 1.8 Ma and 2.2 Ma. A new dating program using the isochron method for burial dating has established an absolute age of 2.22 ± 0.09 Ma for a large portion of the Lower Bank, which can now be identified as containing the earliest Oldowan stone tools and fossils of Paranthropus robustus in South Africa. This date agrees within one sigma with the U-Pb age of 2.25 ± 0.08 Ma previously published for the flowstone underlying the Lower Bank and confirms a relatively rapid rate of accumulation for a large portion of the talus.


Subject(s)
Archaeology , Caves , Fossils , Hominidae , Tool Use Behavior , Animals , History, Ancient , South Africa
16.
J Hum Evol ; 158: 102983, 2021 09.
Article in English | MEDLINE | ID: mdl-33888323

ABSTRACT

The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.


Subject(s)
Biological Evolution , Fossils , Hominidae/anatomy & histology , Shoulder/anatomy & histology , Animals , Female , Gorilla gorilla/anatomy & histology , Humans , Male , Scapula/anatomy & histology
17.
Soft Matter ; 17(10): 2688-2694, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33533359

ABSTRACT

Ionic liquids (ILs) have exhibited enormous potential as electrolytes, designer solvents and reaction media, as well as being surprisingly effective platforms for amphiphile self-assembly and for preserving structure of complex biomolecules. This has led to their exploration as media for long-term biopreservation and in biosensors, for which their viability depends on their ability to sustain both structure and function within complex, multicomponent nanoscale compartments and assemblies. Here we show that a tethered lipid bilayer can be assembled directly in a purely IL environment that retains its structure upon exchange between IL and aqueous buffer, and that the membrane transporter valinomycin can be incorporated so as to retain its functionality and cation selectivity. This paves the way for the development of long-lived, non-aqueous microreactors and sensor assemblies, and demonstrates the potential for complex proteins to retain functionality in non-aqueous, ionic liquid solvents.


Subject(s)
Ionic Liquids , Cations , Ion Transport , Lipid Bilayers , Solvents
18.
Sci Rep ; 10(1): 4285, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179760

ABSTRACT

Functional morphology of the atlas reflects multiple aspects of an organism's biology. More specifically, its shape indicates patterns of head mobility, while the size of its vascular foramina reflects blood flow to the brain. Anatomy and function of the early hominin atlas, and thus, its evolutionary history, are poorly documented because of a paucity of fossilized material. Meticulous excavation, cleaning and high-resolution micro-CT scanning of the StW 573 ('Little Foot') skull has revealed the most complete early hominin atlas yet found, having been cemented by breccia in its displaced and flipped over position on the cranial base anterolateral to the foramen magnum. Description and landmark-free morphometric analyses of the StW 573 atlas, along with other less complete hominin atlases from Sterkfontein (StW 679) and Hadar (AL 333-83), confirm the presence of an arboreal component in the positional repertoire of Australopithecus. Finally, assessment of the cross-sectional areas of the transverse foramina of the atlas and the left carotid canal in StW 573 further suggests there may have been lower metabolic costs for cerebral tissues in this hominin than have been attributed to extant humans and may support the idea that blood perfusion of these tissues increased over the course of hominin evolution.


Subject(s)
Biological Evolution , Brain/metabolism , Head/physiology , Hominidae/anatomy & histology , Skull/anatomy & histology , Animals , Fossils , Hominidae/classification , Humans , South Africa
19.
Biochim Biophys Acta Biomembr ; 1862(2): 183128, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31734310

ABSTRACT

Clusters of positively-charged basic amino acid residues, particularly lysine, are known to promote the interaction of many peripheral membrane proteins with the cytoplasmic surface of the plasma membrane via electrostatic interactions. In this work, cholesterol's effects on the interaction between lysine residues and membranes have been studied. Using poly-l-lysine (PLL) and vesicles as models to mimic the interaction between lysine-rich protein domains and the plasma membrane, light scattering measurements indicated cholesterol enhanced the electrostatic interaction through indirectly affecting the negatively charged phospholipid dioleoylphosphatidylserine, DOPS. Addition of PLL to lipid vesicles containing DOPS showed an initial increase in static light scattering (SLS), attributed to binding of PLL to the vesicle surface, followed by a slower continuously declining SLS signal, which, from comparison with fluorescent dye leakage studies could be attributed to vesicle lysis. Although electrostatic interactions between PLL and the membrane were not necessary for penetration to occur, cholesterol promoted membrane disruption of negatively charged vesicles, possibly by increasing the electrostatic interactions between PLL and the membrane. In contrast, cholesterol lowered the susceptibility of uncharged vesicles (formed using dioleoylphosphatidylcholine, DOPC) to PLL penetration. This can be explained by the absence of electrostatic interactions and cholesterol's known ability to increase membrane thickness and mechanical strength. Thus, the ability of cationic peptides to penetrate membranes including cholesterol is likely to depend on the membrane's PS:PC ratio.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phosphatidylserines/chemistry , Polylysine/chemistry , Cell Membrane Permeability , Lipid Bilayers/metabolism , Polylysine/metabolism
20.
J Am Chem Soc ; 142(2): 1090-1100, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31840988

ABSTRACT

Peptide ligation chemistry has revolutionized protein science by providing access to homogeneously modified peptides and proteins. However, lipidated polypeptides and integral membrane proteins-an important class of biomolecules-remain enormously challenging to access synthetically owing to poor aqueous solubility of one or more of the fragments under typical ligation conditions. Herein we describe the advent of a reductive diselenide-selenoester ligation (rDSL) method that enables efficient ligation of peptide fragments down to low nanomolar concentrations, without resorting to solubility tags or hybridizing templates. The power of rDSL is highlighted in the efficient synthesis of the FDA-approved therapeutic lipopeptide tesamorelin and palmitylated variants of the transmembrane lipoprotein phospholemman (FXYD1). Lipidation of FXYD1 was shown to critically modulate inhibitory activity against the Na+/K+ pump.


Subject(s)
Peptides/chemistry , Selenium Compounds/chemistry , Esters/chemistry , Light , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL