Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 731
Filter
1.
Hum Mol Genet ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704739

ABSTRACT

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.

2.
J Nucl Med ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604763

ABSTRACT

PET using 68Ga-labeled fibroblast activation protein (FAP) inhibitors (FAPIs) holds high potential for diagnostic imaging of various malignancies, including lung cancer (LC). However, 18F-FDG PET is still the clinical gold standard for LC imaging. Several subtypes of LC, especially lepidic LC, are frequently 18F-FDG PET-negative, which markedly hampers the assessment of single pulmonary lesions suggestive of LC. Here, we evaluated the diagnostic potential of static and dynamic 68Ga-FAPI-46 PET in the 18F-FDG-negative pulmonary lesions of 19 patients who underwent surgery or biopsy for histologic diagnosis after PET imaging. For target validation, FAP expression in lepidic LC was confirmed by FAP immunohistochemistry. Methods: Hematoxylin and eosin staining and FAP immunohistochemistry of 24 tissue sections of lepidic LC from the local tissue bank were performed and analyzed visually. Clinically, 19 patients underwent static and dynamic 68Ga-FAPI-46 PET in addition to 18F-FDG PET based on individual clinical indications. Static PET data of both examinations were analyzed by determining SUVmax, SUVmean, and tumor-to-background ratio (TBR) against the blood pool, as well as relative parameters (68Ga-FAPI-46 in relation to18F-FDG), of histologically confirmed LC and benign lesions. Time-activity curves and dynamic parameters (time to peak, slope, k 1, k 2, k 3, and k 4) were extracted from dynamic 68Ga-FAPI-46 PET data. The sensitivity and specificity of all parameters were analyzed by calculating receiver-operating-characteristic curves. Results: FAP immunohistochemistry confirmed the presence of strongly FAP-positive cancer-associated fibroblasts in lepidic LC. LC showed markedly elevated 68Ga-FAPI-46 uptake, higher TBRs, and higher 68Ga-FAPI-46-to-18F-FDG ratios for all parameters than did benign pulmonary lesions. Dynamic imaging analysis revealed differential time-activity curves for LC and benign pulmonary lesions: initially increasing time-activity curves with a decent slope were typical of LC, and steadily decreasing time-activity curve indicated benign pulmonary lesions, as was reflected by a significantly increased time to peak and significantly smaller absolute values of the slope for LC. Relative 68Ga-FAPI-46-to-18F-FDG ratios regarding SUVmax and TBR showed the highest sensitivity and specificity for the discrimination of LC from benign pulmonary lesions. Conclusion: 68Ga-FAPI-46 PET is a powerful new tool for the assessment of single 18F-FDG-negative pulmonary lesions and may optimize patient stratification in this clinical setting.

3.
Front Bioinform ; 4: 1380928, 2024.
Article in English | MEDLINE | ID: mdl-38633435

ABSTRACT

Introduction: Gene set enrichment analysis (GSEA) subsequent to differential expression analysis is a standard step in transcriptomics and proteomics data analysis. Although many tools for this step are available, the results are often difficult to reproduce because set annotations can change in the databases, that is, new features can be added or existing features can be removed. Finally, such changes in set compositions can have an impact on biological interpretation. Methods: We present bootGSEA, a novel computational pipeline, to study the robustness of GSEA. By repeating GSEA based on bootstrap samples, the variability and robustness of results can be studied. In our pipeline, not all genes or proteins are involved in the different bootstrap replicates of the analyses. Finally, we aggregate the ranks from the bootstrap replicates to obtain a score per gene set that shows whether it gains or loses evidence compared to the ranking of the standard GSEA. Rank aggregation is also used to combine GSEA results from different omics levels or from multiple independent studies at the same omics level. Results: By applying our approach to six independent cancer transcriptomics datasets, we showed that bootstrap GSEA can aid in the selection of more robust enriched gene sets. Additionally, we applied our approach to paired transcriptomics and proteomics data obtained from a mouse model of spinal muscular atrophy (SMA), a neurodegenerative and neurodevelopmental disease associated with multi-system involvement. After obtaining a robust ranking at both omics levels, both ranking lists were combined to aggregate the findings from the transcriptomics and proteomics results. Furthermore, we constructed the new R-package "bootGSEA," which implements the proposed methods and provides graphical views of the findings. Bootstrap-based GSEA was able in the example datasets to identify gene or protein sets that were less robust when the set composition changed during bootstrap analysis. Discussion: The rank aggregation step was useful for combining bootstrap results and making them comparable to the original findings on the single-omics level or for combining findings from multiple different omics levels.

4.
Atherosclerosis ; 392: 117525, 2024 May.
Article in English | MEDLINE | ID: mdl-38598969

ABSTRACT

Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.


Subject(s)
Blood Component Removal , Consensus , Homozygote , Humans , Blood Component Removal/methods , Child , Treatment Outcome , Lipoprotein(a)/blood , Cholesterol, LDL/blood , Adolescent , Liver Transplantation , Biomarkers/blood , Hyperlipoproteinemia Type I/diagnosis , Hyperlipoproteinemia Type I/therapy , Hyperlipoproteinemia Type I/blood , Hyperlipoproteinemia Type I/genetics , Phenotype , Hyperlipoproteinemia Type II/therapy , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/diagnosis , Child, Preschool , Lipoproteins/blood , Genetic Predisposition to Disease
5.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547266

ABSTRACT

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Subject(s)
Cytochrome P-450 Enzyme System , Hordeum , Indole Alkaloids , Multigene Family , Hordeum/genetics , Hordeum/metabolism , Indole Alkaloids/metabolism , Plant Breeding , Oxidation-Reduction , Tryptophan/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Editing , Genes, Plant
6.
Front Med (Lausanne) ; 11: 1360706, 2024.
Article in English | MEDLINE | ID: mdl-38495118

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) poses a substantial global health burden, demanding advanced diagnostic tools for early detection and accurate phenotyping. In this line, this study seeks to enhance COPD characterization on chest computed tomography (CT) by comparing the spatial and quantitative relationships between traditional parametric response mapping (PRM) and a novel self-supervised anomaly detection approach, and to unveil potential additional insights into the dynamic transitional stages of COPD. Methods: Non-contrast inspiratory and expiratory CT of 1,310 never-smoker and GOLD 0 individuals and COPD patients (GOLD 1-4) from the COPDGene dataset were retrospectively evaluated. A novel self-supervised anomaly detection approach was applied to quantify lung abnormalities associated with COPD, as regional deviations. These regional anomaly scores were qualitatively and quantitatively compared, per GOLD class, to PRM volumes (emphysema: PRMEmph, functional small-airway disease: PRMfSAD) and to a Principal Component Analysis (PCA) and Clustering, applied on the self-supervised latent space. Its relationships to pulmonary function tests (PFTs) were also evaluated. Results: Initial t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the self-supervised latent space highlighted distinct spatial patterns, revealing clear separations between regions with and without emphysema and air trapping. Four stable clusters were identified among this latent space by the PCA and Cluster Analysis. As the GOLD stage increased, PRMEmph, PRMfSAD, anomaly score, and Cluster 3 volumes exhibited escalating trends, contrasting with a decline in Cluster 2. The patient-wise anomaly scores significantly differed across GOLD stages (p < 0.01), except for never-smokers and GOLD 0 patients. In contrast, PRMEmph, PRMfSAD, and cluster classes showed fewer significant differences. Pearson correlation coefficients revealed moderate anomaly score correlations to PFTs (0.41-0.68), except for the functional residual capacity and smoking duration. The anomaly score was correlated with PRMEmph (r = 0.66, p < 0.01) and PRMfSAD (r = 0.61, p < 0.01). Anomaly scores significantly improved fitting of PRM-adjusted multivariate models for predicting clinical parameters (p < 0.001). Bland-Altman plots revealed that volume agreement between PRM-derived volumes and clusters was not constant across the range of measurements. Conclusion: Our study highlights the synergistic utility of the anomaly detection approach and traditional PRM in capturing the nuanced heterogeneity of COPD. The observed disparities in spatial patterns, cluster dynamics, and correlations with PFTs underscore the distinct - yet complementary - strengths of these methods. Integrating anomaly detection and PRM offers a promising avenue for understanding of COPD pathophysiology, potentially informing more tailored diagnostic and intervention approaches to improve patient outcomes.

7.
FEBS J ; 291(9): 1992-2008, 2024 May.
Article in English | MEDLINE | ID: mdl-38362806

ABSTRACT

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Subject(s)
Adenosine Triphosphate , Allosteric Site , Inosine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Inosine/metabolism , Kinetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Catalytic Domain , Allosteric Regulation , Crystallography, X-Ray , Inosine Monophosphate/metabolism , Models, Molecular , Protein Conformation , Protein Binding
8.
Pediatr Nephrol ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347283

ABSTRACT

Despite significant medical and technical improvements in the field of dialysis, the morbidity and mortality among patients with chronic kidney disease (CKD) stage 5 on dialysis remains extremely high. Hemodiafiltration (HDF), a dialysis method that combines the two main principles of hemodialysis (HD) and hemofiltration-diffusion and convection-has had a positive impact on survival when delivered with a high convective dose. Improved outcomes with HDF have been attributed to the following factors: HDF removes middle molecular weight uremic toxins including inflammatory cytokines, increases hemodynamic stability, and reduces inflammation and oxidative stress compared to conventional HD. Two randomized trials in adults have shown improved survival with HDF compared to high-flux HD. A large prospective cohort study in children has shown that HDF attenuated the progression of cardiovascular disease, improved bone turnover and growth, reduced inflammation, and improved blood pressure control compared to conventional HD. Importantly, children on HDF reported fewer headaches, dizziness, and cramps; had increased physical activity; and improved school attendance compared to those on HD. In this educational review, we discuss the technical aspects of HDF and results from pediatric studies, comparing outcomes on HDF vs. conventional HD. Convective volume, the cornerstone of treatment with HDF and a key determinant of outcomes in adult randomized trials, is discussed in detail, including the practical aspects of achieving an optimal convective volume.

9.
Clin Kidney J ; 17(1): sfad291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223336

ABSTRACT

Background and hypothesis: Hospital admissions in pediatric dialysis patients need to be better studied, and most existing studies are retrospective and based on registry data. This study aimed to analyse and compare hospital admission rates, causes, length of stay (LOS), and outcomes in children treated with peritoneal dialysis (PD) and hemodialysis (HD). Methods: Data from 236 maintenance PD and 138 HD patients across 16 European dialysis centers were collected between 1 July 2017 and 30 June 2018. A total of 178 hospitalized patients (103 PD, 75 HD) were included for further analyses. Results: There were 465 hospitalization events (268 PD, 197 HD) with a rate of 0.39 admissions per 100 patient-days at risk (PDAR) and 2.4 hospital days per 100 PDAR. The admission rates were not significantly different between HD and PD patients. The most common causes of hospitalization were access-related infections (ARI) (17%), non-infectious complications of access (NIAC) (14%), and infections unrelated to access (12%). ARI was the leading cause in PD patients (24%), while NIAC was more common in HD patients (19%). PD patients had more ARIs, diagnostic procedures, and treatment adjustments (P < .05), while HD patients had more NIACs, infections unrelated to access, access placement procedures, and interventional/surgical procedures (P < .001). LOS was longer with acute admissions than non-acute admissions (P < .001). Overall LOS and LOS in the intensive care unit were similar between HD and PD patients. High serum uric acid and low albumin levels were significant predictors of longer LOS (P = .022 and P = .045, respectively). Young age, more significant height deficit, and older age at the start of dialysis were predictors of longer cumulative hospital days (P = .002, P = .001, and P = .031, respectively). Conclusion: Access-related complications are the main drivers of hospitalization in pediatric dialysis patients, and growth and nutrition parameters are significant predictors of more extended hospital stays.

10.
Kidney Int ; 105(2): 390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245217
11.
Hum Mol Genet ; 33(5): 400-425, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37947217

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.


Subject(s)
Drug Repositioning , Muscular Atrophy, Spinal , Mice , Animals , Pharmaceutical Preparations , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscle, Skeletal/metabolism , Gene Expression Profiling , Prednisolone/therapeutic use , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
12.
Eur J Intern Med ; 120: 11-16, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37845118

ABSTRACT

Pulmonary involvement is doubtless one the most fatal organ manifestations of the autoimmune rheumatic diseases (ARD) and involves the parenchyma, the vessels, the respiratory system itself, but also the muscles and the pleura. Close and regular screening assessments, identification of risk factors, clinical signs associated with the existence of lung disease should alarm the involved physicians treating these patients. The accurate classification is essential, as different treatment options are nowadays available. Pulmonary manifestations of ARD will be analyzed in this review article with special emphasis on interstitial lung disease and pulmonary hypertension.


Subject(s)
Autoimmune Diseases , Connective Tissue Diseases , Hypertension, Pulmonary , Lung Diseases, Interstitial , Rheumatic Diseases , Humans , Connective Tissue Diseases/complications , Lung Diseases, Interstitial/etiology , Hypertension, Pulmonary/complications , Lung , Autoimmune Diseases/complications , Rheumatic Diseases/complications
13.
Tumour Biol ; 46(s1): S163-S175, 2024.
Article in English | MEDLINE | ID: mdl-37840516

ABSTRACT

BACKGROUND: Serum tumor markers (STM) may complement imaging and provide additional clinical information for patients with non-small cell lung cancer (NSCLC). OBJECTIVE: To determine whether STMs can predict outcomes in patients with stable disease (SD) after initial treatment. METHODS: This single-center, prospective, observational trial enrolled 395 patients with stage III/IV treatment-naïve NSCLC; of which 263 patients were included in this analysis. Computed Tomography (CT) scans were performed and STMs measured before and after initial treatment (two cycles of chemotherapy and/or an immune checkpoint inhibitor or tyrosine kinase inhibitor); analyses were based on CT and STM measurements obtained at first CT performed after cycle 2 only PFS and OS were analyzed by Kaplan-Meier curves and Cox-proportional hazard models. RESULTS: When patients with SD (n = 100) were split into high- and low-risk groups based on CYFRA 21-1, CEA and CA 125 measurements using an optimized cut-off, a 4-fold increase risk of progression or death was estimated for high- vs low-risk SD patients (PFS, HR 4.17; OS, 3.99; both p < 0.0001). Outcomes were similar between patients with high-risk SD or progressive disease (n = 35) (OS, HR 1.17) and between patients with low-risk SD or partial response (n = 128) (PFS, HR 0.98; OS, 1.14). CONCLUSIONS: STMs can provide further guidance in patients with indeterminate CT responses by separating them into high- and low-risk groups for future PFS and OS events.


Subject(s)
Antigens, Neoplasm , Carcinoma, Non-Small-Cell Lung , Keratin-19 , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Prognosis , Prospective Studies , Tomography, X-Ray Computed
14.
Tumour Biol ; 46(s1): S219-S232, 2024.
Article in English | MEDLINE | ID: mdl-37840518

ABSTRACT

BACKGROUND: Despite successful response to first line therapy, patients with small-cell lung cancer (SCLC) often suffer from early relapses and disease progression. OBJECTIVE: To investigate the relevance of serum tumor markers for estimation of prognosis at several time points during the course of disease. METHODS: In a prospective, single-center study, serial assessments of progastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), cytokeratin-19 fragments (CYFRA 21-1) and carcino-embryogenic antigen (CEA) were performed during and after chemotherapy in 232 SCLC patients, and correlated with therapy response and overall survival (OS). RESULTS: ProGRP, NSE and CYFRA 21-1 levels decreased quickly after the first chemotherapy cycle and correlated well with the radiological response. Either as single markers or in combination they provided valuable prognostic information regarding OS at all timepoints investigated: prior to first-line therapy, after two treatment cycles in patients with successful response to first-line therapy, and prior to the start of second-line therapy. Furthermore, they were useful for continuous monitoring during and after therapy and often indicated progressive disease several months ahead of radiological changes. CONCLUSIONS: The results indicate the great potential of ProGRP, NSE and CYFRA 21-1 for estimating prognosis and monitoring of SCLC patients throughout the course of the disease.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Keratin-19 , Lung Neoplasms/pathology , Biomarkers, Tumor , Prognosis , Prospective Studies , Peptide Fragments , Antigens, Neoplasm , Phosphopyruvate Hydratase/therapeutic use , Antineoplastic Agents/therapeutic use , Recombinant Proteins
15.
Pediatr Nephrol ; 39(3): 807-818, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37566114

ABSTRACT

BACKGROUND: This retrospective real-world study used data from two registries, International Pediatric Peritoneal Dialysis Network (IPPN) and International Pediatric Hemodialysis Network (IPHN), to characterize the efficacy and safety of continuous erythropoietin receptor activator (C.E.R.A.) in pediatric patients with chronic kidney disease (CKD) on peritoneal dialysis (PD) or hemodialysis (HD). METHODS: IPPN and IPHN collect prospective data (baseline and every 6 months) from pediatric PD and HD centers worldwide. Demographics, clinical characteristics, dialysis information, treatment, laboratory parameters, number and causes of hospitalization events, and deaths were extracted for patients on C.E.R.A. treatment (IPPN: 2007-2021; IPHN: 2013-2021). RESULTS: We analyzed 177 patients on PD (median age 10.6 years) and 52 patients on HD (median age 14.1 years) who had ≥ 1 observation while being treated with C.E.R.A. The median (interquartile range [IQR]) observation time under C.E.R.A. exposure was 6 (0-12.5) and 12 (0-18) months, respectively. Hemoglobin concentrations were stable over time; respective means (standard deviation) at last observation were 10.9 (1.7) g/dL and 10.4 (1.7) g/dL. Respective median (IQR) monthly C.E.R.A. doses at last observation were 3.5 (2.3-5.1) µg/kg, or 95 (62-145) µg/m2 and 2.1 (1.2-3.4) µg/kg, or 63 (40-98) µg/m2. Non-elective hospitalizations occurred in 102 (58%) PD and 32 (62%) HD patients. Seven deaths occurred (19.8 deaths per 1000 observation years). CONCLUSIONS: C.E.R.A. was associated with efficient maintenance of hemoglobin concentrations in pediatric patients with CKD on dialysis, and appeared to have a favorable safety profile. The current analysis revealed no safety signals.


Subject(s)
Erythropoietin , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Child , Adolescent , Renal Dialysis/adverse effects , Retrospective Studies , Prospective Studies , Hemoglobins/analysis , Treatment Outcome , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/drug therapy , Registries , Kidney Failure, Chronic/therapy
17.
Artif Organs ; 48(5): 484-494, 2024 May.
Article in English | MEDLINE | ID: mdl-38151979

ABSTRACT

INTRODUCTION: Peritoneal dialysis (PD) is a life maintaining treatment in patients with end-stage renal disease. Its chronic application leads to peritoneal mesothelial layer denudation and fibrotic transformation along with vascular activation of inflammatory pathways. The impact of different PD fluids (PDF) on mesothelial and endothelial cell function and repair mechanisms are not comprehensively described. MATERIALS AND METHODS: Mesothelial (MeT-5A) and endothelial cells (EA.hy926) were cultured in 1:1 ratio with cell medium and different PDF (icodextrin-based, amino acid-based, and glucose-based). Cell adhesion, cell migration, and cell proliferation in 2D and spheroid formation and collagen gel contraction assays in 3D cell cultures were performed. RESULTS: Cell proliferation and cell-mediated gel contraction were both significantly decreased in all conditions. 3D spheroid formation was significantly reduced with icodextrin and amino acid PDF, but unchanged with glucose PDF. Adhesion was significantly increased by amino acid PDF in mesothelial cells and decreased by icodextrin and amino acid PDF in endothelial cells. Migration capacity was significantly decreased in mesothelial cells by all three PDF, while endothelial cells remained unaffected. CONCLUSIONS: In 3D phenotypes the effects of PDF are more uniform in both mesothelial and endothelial cells, mitigating spheroid formation and gel contraction. On the contrary, effects on 2D phenotypes are more uniform in the icodextrin and amino acid PDF as opposed to glucose ones and affect mesothelial cells more variably. 2D and 3D comparative assessments of PDF effects on the main peritoneal membrane cell barriers, the mesothelial and endothelial, could provide useful translational information for PD studies.


Subject(s)
Endothelial Cells , Peritoneal Dialysis , Humans , Icodextrin/metabolism , Icodextrin/pharmacology , Dialysis Solutions/adverse effects , Dialysis Solutions/metabolism , Peritoneum/metabolism , Phenotype , Amino Acids/metabolism , Amino Acids/pharmacology , Glucose/pharmacology , Glucose/metabolism , Cells, Cultured , Epithelial Cells
18.
Biochem Biophys Res Commun ; 693: 149376, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38104523

ABSTRACT

Peritoneal dialysis (PD) and prolonged exposure to PD fluids (PDF) induce peritoneal membrane (PM) fibrosis and hypervascularity, leading to functional PM degeneration. 2-deoxy-glucose (2-DG) has shown potential as PM antifibrotic by inhibiting hyper-glycolysis induced mesothelial-to-mesenchymal transition (MMT). We investigated whether administration of 2-DG with several PDF affects the permeability of mesothelial and endothelial barrier of the PM. The antifibrotic effect of 2-DG was confirmed by the gel contraction assay with embedded mesothelial (MeT-5A) or endothelial (EA.hy926) cells cultured in Dianeal® 2.5 % (CPDF), BicaVera® 2.3 % (BPDF), Balance® 2.3 % (LPDF) with/without 2-DG addition (0.2 mM), and qPCR for αSMA, CDH2 genes. Moreover, 2-DG effect was tested on the permeability of monolayers of mesothelial and endothelial cells by monitoring the transmembrane resistance (RTM), FITC-dextran (10, 70 kDa) diffusion and mRNA expression levels of CLDN-1 to -5, ZO1, SGLT1, and SGLT2 genes. Contractility of MeT-5A cells in CPDF/2-DG was decreased, accompanied by αSMA (0.17 ± 0.03) and CDH2 (2.92 ± 0.29) gene expression fold changes. Changes in αSMA, CDH2 were found in EA.hy926 cells, though αSMA also decreased under LPDF/2-DG incubation (0.42 ± 0.02). Overall, 2-DG mitigated the PDF-induced alterations in mesothelial and endothelial barrier function as shown by RTM, dextran transport and expression levels of the CLDN-1 to -5, ZO1, and SGLT2. Thus, supplementation of PDF with 2-DG not only reduces MMT but also improves functional permeability characteristics of the PM mesothelial and endothelial barrier.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Humans , Sodium-Glucose Transporter 2/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Endothelial Cells , Peritoneal Dialysis/adverse effects , Peritoneum/pathology , Dialysis Solutions/metabolism , Dialysis Solutions/pharmacology , Peritoneal Fibrosis/metabolism , Glucose/metabolism , Epithelial Cells/metabolism , Cells, Cultured
19.
Eur Radiol ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150075

ABSTRACT

OBJECTIVES: To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity. MATERIALS AND METHODS: Paired inspiratory/expiratory CT and clinical data from COPDGene and COSYCONET cohort studies were included. COPDGene data served as training/validation/test data sets (N = 3144/786/1310) and COSYCONET as external test set (N = 446). To differentiate low-risk (healthy/minimal disease, [GOLD 0]) from COPD patients (GOLD 1-4), the self-supervised DL model learned semantic information from 50 × 50 × 50 voxel samples from segmented intact lungs. An anomaly detection approach was trained to quantify lung abnormalities related to COPD, as regional deviations. Four supervised DL models were run for comparison. The clinical and radiological predictive power of the proposed anomaly score was assessed using linear mixed effects models (LMM). RESULTS: The proposed approach achieved an area under the curve of 84.3 ± 0.3 (p < 0.001) for COPDGene and 76.3 ± 0.6 (p < 0.001) for COSYCONET, outperforming supervised models even when including only inspiratory CT. Anomaly scores significantly improved fitting of LMM for predicting lung function, health status, and quantitative CT features (emphysema/air trapping; p < 0.001). Higher anomaly scores were significantly associated with exacerbations for both cohorts (p < 0.001) and greater dyspnea scores for COPDGene (p < 0.001). CONCLUSION: Quantifying heterogeneous COPD manifestations as anomaly offers advantages over supervised methods and was found to be predictive for lung function impairment and morphology deterioration. CLINICAL RELEVANCE STATEMENT: Using deep learning, lung manifestations of COPD can be identified as deviations from normal-appearing chest CT and attributed an anomaly score which is consistent with decreased pulmonary function, emphysema, and air trapping. KEY POINTS: • A self-supervised DL anomaly detection method discriminated low-risk individuals and COPD subjects, outperforming classic DL methods on two datasets (COPDGene AUC = 84.3%, COSYCONET AUC = 76.3%). • Our contrastive task exhibits robust performance even without the inclusion of expiratory images, while voxel-based methods demonstrate significant performance enhancement when incorporating expiratory images, in the COPDGene dataset. • Anomaly scores improved the fitting of linear mixed effects models in predicting clinical parameters and imaging alterations (p < 0.001) and were directly associated with clinical outcomes (p < 0.001).

20.
Pediatr Nephrol ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38141144

ABSTRACT

Children requiring long-term kidney replacement therapy are a "rare disease" cohort. While the basic technical requirements for hemodialysis (HD) are similar in children and adults, key aspects of the child's cardiovascular anatomy and hemodynamic specifications must be considered. In this article, we describe the technical requirements for long-term HD therapy for children and the devices that are currently available around the world. We highlight the characteristics and major technical shortcomings of permanent central venous catheters, dialyzers, dialysis machines, and software available to clinicians who care for children. We show that currently available HD machines are not equipped with appropriately small circuits and sensitive control mechanisms to perform safe and effective HD in the youngest patients. Manufacturers limit their liability, and health regulatory agencies permit the use of devices, only in children according to the manufacturers' pre-specified weight limitations. Although registries show that 6-23% of children starting long-term HD weigh less than 15 kg, currently, there is only one long-term HD device that is cleared for use in children weighing 10 to 15 kg and none is available and labelled for use in children weighing less than 10 kg anywhere in the world. Thus, many children are being treated "off-label" and are subject to interventions delivered by medical devices that lack pediatric safety and efficacy data. Moreover, recent improvements in dialysis technology offered to adult patients are denied to most children. We, in turn, advocate for concerted action by pediatric nephrologists, industry, and health regulatory agencies to increase the development of dedicated HD machines and equipment for children.

SELECTION OF CITATIONS
SEARCH DETAIL
...