Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Drug Discov Today ; 28(6): 103575, 2023 06.
Article in English | MEDLINE | ID: mdl-37003513

ABSTRACT

Tumor necrosis factor (TNF) is a pleiotropic cytokine with a major role in immune system homeostasis and is involved in many inflammatory and autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, Alzheimer's disease (AD), and multiple sclerosis (MS). Thus, TNF and its receptors, TNFR1 and TNFR2, are relevant pharmacological targets. Biologics have been developed to block TNF-dependent signaling cascades, but they display serious side effects, and their pharmacological effectiveness decreases over time because of their immunogenicity. In this review, we present recent discoveries in small molecules targeting TNF and its receptors and discuss alternative strategies for modulating TNF signaling.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Multiple Sclerosis , Humans , Receptors, Tumor Necrosis Factor, Type I/therapeutic use , Cytokines , Autoimmune Diseases/drug therapy , Tumor Necrosis Factor-alpha
2.
Molecules ; 27(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056832

ABSTRACT

Recent reports of antiepileptic activity of the fungal alkaloid TMC-120B have renewed the interest in this natural product. Previous total syntheses of TMC-120B comprise many steps and have low overall yields (11-17 steps, 1.5-2.9% yield). Thus, to access this compound more efficiently, we herein present a concise and significantly improved total synthesis of the natural product. Our short synthesis relies on two key cyclization steps to assemble the central scaffold: isoquinoline formation via an ethynyl-imino cyclization and an intramolecular Friedel-Crafts reaction to form the furanone.


Subject(s)
Alkaloids/chemistry , Aspergillus/chemistry , Benzofurans/chemical synthesis , Isoquinolines/chemistry , Benzofurans/chemistry , Cyclization , Isoquinolines/chemical synthesis , Molecular Structure , Stereoisomerism
3.
Commun Chem ; 5(1): 64, 2022 May 20.
Article in English | MEDLINE | ID: mdl-36697615

ABSTRACT

Carbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca2+-dependent carbohydrate-protein interactions. Here, we show the effect of MBPs on the clinically relevant lectins DC-SIGN, Langerin, LecA and LecB. Detailed structural and biochemical investigations revealed the specificity of MBPs for different Ca2+-dependent lectins. Exploring the structure-activity relationships of several fragments uncovered the functional groups in the MBPs suitable for modification to further improve lectin binding and selectivity. Selected inhibitors bound efficiently to DC-SIGN-expressing cells. Altogether, the discovery of MBPs as a promising class of Ca2+-dependent lectin inhibitors creates a foundation for fragment-based ligand design for future drug discovery campaigns.

4.
ChemMedChem ; 16(17): 2588-2603, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34101375

ABSTRACT

Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.


Subject(s)
Drug Discovery , RNA/drug effects , Small Molecule Libraries/pharmacology , Drug Evaluation, Preclinical , Small Molecule Libraries/chemistry
5.
J Med Chem ; 64(9): 5252-5275, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33856791

ABSTRACT

Reactive oxygen species (ROS) are involved in physiological cellular processes including differentiation, proliferation, and apoptosis by acting as signaling molecules or regulators of transcription factors. The maintenance of appropriate cellular ROS levels is termed redox homeostasis, a balance between their production and neutralization. High concentrations of ROS may contribute to severe pathological events including cancer, neurodegenerative, and cardiovascular diseases. In recent years, approaches to target the sources of ROS production directly in order to develop tool compounds or potential therapeutics have been explored. Herein, we briefly outline the major sources of cellular ROS production and comprehensively review the targeting of these by small-molecule inhibitors. We critically assess the value of ROS inhibitors with different mechanisms-of-action, including their potency, mode-of-action, known off-target effects, and clinical or preclinical status, while suggesting future avenues of research in the field.


Subject(s)
Reactive Oxygen Species/metabolism , Small Molecule Libraries/chemistry , Animals , Ferroptosis/drug effects , Free Radical Scavengers/chemistry , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Reactive Oxygen Species/chemistry , Small Molecule Libraries/pharmacology , Xanthine Dehydrogenase/chemistry , Xanthine Dehydrogenase/metabolism
6.
Chemistry ; 27(24): 7099-7102, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33769639

ABSTRACT

The synthesis of a fully deprotected Kdo-containing rhamnogalacturonan II pentasaccharide is described. The strategy relies on the preparation of a suitably protected homogalacturonan tetrasaccharide backbone, through a post-glycosylation oxidation approach, and its stereoselective glycosylation with a Kdo fluoride donor.

7.
Curr Biol ; 31(10): 2111-2123.e9, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33756108

ABSTRACT

The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G , Plant Epidermis , Plant Proteins , Solanum lycopersicum , ATP Binding Cassette Transporter, Subfamily G/genetics , ATP Binding Cassette Transporter, Subfamily G/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Membrane Lipids , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/metabolism
8.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572987

ABSTRACT

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Glycosyltransferases/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Genome, Plant , Glycosyltransferases/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity
9.
Sci Adv ; 6(34): eabb5353, 2020 08.
Article in English | MEDLINE | ID: mdl-32875113

ABSTRACT

Diagnostic imaging often outperforms the surgeon's ability to identify small structures during therapeutic procedures. Smart soft tissue markers that translate the sensitivity of diagnostic imaging into optimal therapeutic intervention are therefore highly warranted. This paper presents a unique adaptable liquid soft tissue marker system based on functionalized carbohydrates (Carbo-gel). The liquid state of these markers allows for high-precision placement under image guidance using thin needles. Based on step-by-step modifications, the image features and mechanical properties of markers can be optimized to bridge diagnostic imaging and specific therapeutic interventions. The performance of Carbo-gel is demonstrated for markers that (i) have radiographic, magnetic resonance, and ultrasound visibility; (ii) are palpable and visible; and (iii) are localizable by near-infrared fluorescence and radio guidance. The study demonstrates encouraging proof of concept for the liquid marker system as a well-tolerated multimodal imaging marker that can improve image-guided radiotherapy and surgical interventions, including robotic surgery.


Subject(s)
Fiducial Markers , Radiotherapy, Image-Guided , Magnetic Resonance Imaging/methods , Needles , Phantoms, Imaging , Radiotherapy, Image-Guided/methods
10.
Plant Methods ; 16: 99, 2020.
Article in English | MEDLINE | ID: mdl-32742297

ABSTRACT

BACKGROUND: Identification and characterization of key enzymes associated with cell wall biosynthesis and modification is fundamental to gain insights into cell wall dynamics. However, it is a challenge that activity assays of glycosyltransferases are very low throughput and acceptor substrates are generally not available. RESULTS: We optimized and validated microscale thermophoresis (MST) to achieve high throughput screening for glycosyltransferase substrates. MST is a powerful method for the quantitative analysis of protein-ligand interactions with low sample consumption. The technique is based on the motion of molecules along local temperature gradients, measured by fluorescence changes. We expressed glycosyltransferases as YFP-fusion proteins in tobacco and optimized the MST method to allow the determination of substrate binding affinity without purification of the target protein from the cell lysate. The application of this MST method to the ß-1,4-galactosyltransferase AtGALS1 validated the capability to screen both nucleotide-sugar donor substrates and acceptor substrates. We also expanded the application to members of glycosyltransferase family GT61 in sorghum for substrate screening and function prediction. CONCLUSIONS: This method is rapid and sensitive to allow determination of both donor and acceptor substrates of glycosyltransferases. MST enables high throughput screening of glycosyltransferases for likely substrates, which will narrow down their in vivo function and help to select candidates for further studies. Additionally, this method gives insight into biochemical mechanism of glycosyltransferase function.

11.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32396713

ABSTRACT

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Subject(s)
Glycosyltransferases/chemistry , Plants/enzymology , Polysaccharides/analysis , Cell Wall/chemistry
12.
Chemistry ; 26(50): 11391-11403, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32339336

ABSTRACT

Fragment-based drug discovery (FBDD) has become an established approach for the generation of early lead candidates. However, despite its success and inherent advantages, hit-to-candidate progression for FBDD is not necessarily faster than that of traditional high-throughput screening. Thus, new technology-driven library design strategies have emerged as a means to facilitate more efficient fragment screening and/or subsequent fragment-to-hit chemistry. This minireview discusses such strategies, which cover the use of labeled fragments for NMR spectroscopy, X-ray crystallographic screening of specialized fragments, covalent linkage for mass spectrometry, dynamic combinatorial chemistry, and fragments optimized for easy elaboration.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Crystallography, X-Ray , Drug Design , Magnetic Resonance Spectroscopy
13.
Org Biomol Chem ; 18(14): 2696-2701, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32206767

ABSTRACT

S-Glycosides are important tools for the elucidation of specific protein-carbohydrate interactions and can significantly aid structural and functional studies of carbohydrate-active enzymes, as they are often inert or act as enzyme inhibitors. In this context, this work focuses on the introduction of an S-linkage into arabinoxylan oligosaccharides (AXs) in order to obtain a small collection of synthetic tools for the study of AXs degrading enzymes. The key step for the introduction of the S-glycosidic linkage involved anomeric thiol S-alkylation of an orthogonally protected l-arabinopyranoside triflate. The resulting S-linked disaccharide was subsequently employed in a series of glycosylation reactions to obtain a selectively protected tetrasaccharide. This could be further elaborated through chemoselective deprotection and glycosylation reactions to introduce branching l-arabinofuranosides.


Subject(s)
Glycosides/chemistry , Oligosaccharides/chemistry , Xylans/chemistry , Arabinose/analogs & derivatives , Arabinose/chemistry , Cross-Linking Reagents/chemistry , Disaccharides/chemical synthesis , Glycosylation , Sulfhydryl Compounds/chemistry
14.
Bioorg Med Chem ; 28(2): 115247, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31843461

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes severe joints damage and other extra-articular alterations. Despite the efficacy of low-dose methotrexate (LD-MTX) in RA treatment, adverse effects are the predominant reasons for discontinuation of therapy. As a therapeutic targeting strategy, the presence of increased concentrations of reactive oxygen species (ROS) in the inflammatory environment can serve as the stimulus for prodrug activation in site-selective drug delivery systems. Our group has previously reported novel ROS sensitive prodrugs (1-3) of MTX and aminopterin (AMT) for site-selective delivery to inflammatory tissue associated with RA, with the aim of reducing side effects in RA therapy. Herein, we investigate the effect and toxicity of the same prodrugs in a rat CIA (collagen-induced arthritis) model of RA. We find that prodrug 1, an arylboronic acid ROS-sensitive MTX-prodrug, displays similar in vivo efficacy as MTX at an equimolar dose, while avoiding adverse effects known to restrict MTX treatment. To further characterize prodrug 1 and its ROS mediated activation, we synthesized compound 4, a negative control lacking the boronic acid moiety. We then investigated the effect of molecules on cell proliferation and cytotoxicity in the presence of the ROS scavenger pyruvate, as well as their stability in buffer and cell media, demonstrating a direct correlation between ROS concentration and the prodrug activity. Moreover, the in vitro ADME properties were investigated, including permeability, rat plasma and microsomal stability.


Subject(s)
Aminopterin/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Methotrexate/pharmacology , Prodrugs/pharmacology , Aminopterin/administration & dosage , Aminopterin/chemistry , Animals , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/chemistry , Apoptosis/drug effects , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/metabolism , Injections, Intraperitoneal , Methotrexate/administration & dosage , Methotrexate/chemistry , Molecular Structure , Prodrugs/administration & dosage , Prodrugs/chemistry , Rats , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
15.
Angew Chem Int Ed Engl ; 59(6): 2204-2210, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31724281

ABSTRACT

Fragment-based drug discovery (FBDD) is a popular method in academia and the pharmaceutical industry for the discovery of early lead candidates. Despite its wide-spread use, the approach still suffers from laborious screening workflows and a limited diversity in the fragments applied. Presented here is the design, synthesis, and biological evaluation of the first fragment library specifically tailored to tackle both these challenges. The 3F library of 115 fluorinated, Fsp3 -rich fragments is shape diverse and natural-product-like with desirable physicochemical properties. The library is perfectly suited for rapid and efficient screening by NMR spectroscopy in a two-stage workflow of 19 F NMR and subsequent 1 H NMR methods. Hits against four diverse protein targets are widely distributed among the fragment scaffolds in the 3F library and a 67 % validation rate was achieved using secondary assays. This collection is the first synthetic fragment library tailor-made for 19 F NMR screening and the results demonstrate that the approach should find broad application in the FBDD community.


Subject(s)
Drug Discovery/methods , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Small Molecule Libraries/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Cycloaddition Reaction , Halogenation , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Quantum Theory , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
16.
Medchemcomm ; 10(9): 1531-1549, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31673314

ABSTRACT

Increased levels of reactive oxygen species (ROS) have been associated with numerous pathophysiological conditions including cancer and inflammation and the ROS stimulus constitutes a potential trigger for drug delivery strategies. Over the past decade, a number of ROS-sensitive functionalities have been identified with the purpose of introducing disease-targeting properties into small molecule drugs - a prodrug strategy that offers a promising approach for increasing the selectivity and efficacy of treatments. This review will provide an overview of the ROS-responsive prodrugs developed to date. A discussion on the current progress and limitations is provided along with a reflection on the unanswered questions that need to be addressed in order to advance this novel approach to the clinic.

17.
SLAS Discov ; 24(3): 398-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30616481

ABSTRACT

Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.


Subject(s)
Cooperative Behavior , Drug Discovery/methods , Drug Evaluation, Preclinical , Europe , High-Throughput Screening Assays , Humans , Structure-Activity Relationship
18.
J Biotechnol ; 290: 44-52, 2019 Jan 20.
Article in English | MEDLINE | ID: mdl-30576682

ABSTRACT

Arabinogalactan proteins are proteoglycans located in the plant cell wall. Most arabinogalactan proteins are composed of carbohydrate moieties of ß-(1→3)-galactan main chains with ß-(1→6)-galactan side chains terminated by other glycans. In this study, three novel endo-ß-(1→3)-galactanases were identified and the substrate specificity was further studied using well-defined galactan oligomers. Linear and branched ß-(1→3)-linked galactans, which resemble the carbohydrate core of the arabinogalactan protein, were used for the characterization of endo-ß-(1→3)-galactanases. The identified enzymes required at least three consecutive galactose residues for activity. Non-substituted regions were preferred, but substituents in the -2 and +2 and in some cases also -1 and +1 subsites were tolerated to some extent, depending on the branching pattern, however at a significantly lower rate/frequency.


Subject(s)
Galactose/metabolism , Oligosaccharides/metabolism , Plant Proteins , beta-Galactosidase , Aspergillus oryzae/genetics , Carbohydrate Conformation , Cloning, Molecular , Galactose/chemistry , Oligosaccharides/chemistry , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , beta-Galactosidase/chemistry , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
19.
Plant Cell Physiol ; 59(12): 2624-2636, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30184190

ABSTRACT

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched ß-1, 4-galactan. Plants in which all three genes were inactivated had no detectable ß-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Galactans/metabolism , Glycosyltransferases/metabolism , Arabidopsis/genetics , Cell Wall/metabolism , Genes, Plant , Golgi Apparatus/metabolism , Plant Leaves/metabolism , Recombinant Proteins/isolation & purification , Subcellular Fractions/metabolism , Substrate Specificity , Nicotiana/metabolism
20.
Eur J Med Chem ; 156: 738-746, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30048923

ABSTRACT

Methotrexate (MTX) is the standard of care in the treatment of rheumatoid arthritis (RA), a common autoimmune disease that is characterized by chronic inflammation in the synovial membrane of joints. Unfortunately, MTX suffers from high discontinuation rates due to a large variability in efficacy and, in particular, adverse effects. As inflammation is associated with elevated levels of reactive oxygen species (ROS) like H2O2, we propose to improve treatment through site-selective delivery of MTX to inflammatory tissue by use of a H2O2 sensitive MTX prodrug. To establish proof proof-of-concept, two novel H2O2 sensitive, thiazolidinone-based MTX prodrugs were synthesized and evaluated for this purpose. MTX-γ-thiazolidinone (MTX-γ-TZ) exhibited the most promising properties - good to high chemical and metabolic stability, excellent aqueous solubility, while being activated when subjected to patho-physiological concentrations of H2O2. In vivo, MTX-γ-TZ exhibited comparable efficacy to MTX in a murine collagen type II-induced arthritis (CIA) model while treated mice showed indications of reduced toxicity as their body weight decreased less towards the end of the study, compared to the MTX-treated group.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Methotrexate/analogs & derivatives , Methotrexate/therapeutic use , Prodrugs/chemistry , Prodrugs/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Humans , Hydrogen Peroxide/metabolism , Male , Methotrexate/pharmacokinetics , Mice , Prodrugs/pharmacokinetics , Reactive Oxygen Species/metabolism , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacokinetics , Thiazolidinediones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...