Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 3(7): 1952-1964, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502163

ABSTRACT

Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.

2.
ACS Pharmacol Transl Sci ; 5(10): 993-1006, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268125

ABSTRACT

Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.

3.
Nucleic Acids Res ; 50(19): 10839-10856, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36215040

ABSTRACT

Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.


Subject(s)
Cell-Penetrating Peptides , MicroRNAs , Peptide Nucleic Acids , Peptide Nucleic Acids/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Cell-Penetrating Peptides/genetics , Furans/pharmacology
4.
Nucleic Acids Res ; 49(2): 713-725, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33406227

ABSTRACT

We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.


Subject(s)
Cyclopentanes/chemistry , DNA/metabolism , Nucleic Acid Conformation , Peptide Nucleic Acids/chemistry , Calorimetry , Circular Dichroism , Crystallography, X-Ray , Cyclopentanes/metabolism , Models, Molecular , Nucleic Acid Denaturation , Peptide Nucleic Acids/metabolism , Real-Time Polymerase Chain Reaction , Spectrophotometry, Ultraviolet , Thermodynamics , Transition Temperature
5.
J Biol Chem ; 294(46): 17654-17668, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31481464

ABSTRACT

WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.


Subject(s)
Enzyme Activators/chemistry , Phosphopeptides/chemistry , Protein Phosphatase 2C/chemistry , Small Molecule Libraries/chemistry , Enzyme Activators/isolation & purification , Enzyme Activators/pharmacology , High-Throughput Screening Assays , Humans , Protein Phosphatase 2C/antagonists & inhibitors , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Substrate Specificity , Tumor Suppressor Protein p53/chemistry
6.
ChemMedChem ; 13(9): 894-901, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29476592

ABSTRACT

The wild-type p53 induced phosphatase 1, Wip1 (PP2Cδ), is a protein phosphatase 2C (PP2C) family serine/threonine phosphatase that negatively regulates the function of the tumor suppressor p53 and several of its positive regulators such as ATM, Chk1, Chk2, Mdm2, and p38 MAPK. Wip1 dephosphorylates and inactivates its protein targets, which are critical for cellular stress responses. Additionally, Wip1 is frequently amplified and overexpressed in several human cancer types. Because of its negative role in regulating the function of tumor suppressor proteins, Wip1 has been identified as a potential therapeutic target in various types of cancers. Based on a recently reported Wip1 inhibitor (G-1), we performed an extensive structure-activity relationship (SAR) analysis. This led us to interesting findings in SAR trends and to the discovery of new chemical analogues with good specificity and bioavailability.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Phosphatase 2C/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Humans , MCF-7 Cells , Protein Phosphatase 2C/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
7.
J Natl Cancer Inst ; 108(3)2016 Mar.
Article in English | MEDLINE | ID: mdl-26598503

ABSTRACT

BACKGROUND: Exosomes, via heat shock protein 70 (HSP70) expressed in their membrane, are able to interact with the toll-like receptor 2 (TLR2) on myeloid-derived suppressive cells (MDSCs), thereby activating them. METHODS: We analyzed exosomes from mouse (C57Bl/6) and breast, lung, and ovarian cancer patient samples and cultured cancer cells with different approaches, including nanoparticle tracking analysis, biolayer interferometry, FACS, and electron microscopy. Data were analyzed with the Student's t and Mann-Whitney tests. All statistical tests were two-sided. RESULTS: We showed that the A8 peptide aptamer binds to the extracellular domain of membrane HSP70 and used the aptamer to capture HSP70 exosomes from cancer patient samples. The number of HSP70 exosomes was higher in cancer patients than in healthy donors (mean, ng/mL ± SD = 3.5 ± 1.7 vs 0.17 ± 0.11, respectively, P = .004). Accordingly, all cancer cell lines examined abundantly released HSP70 exosomes, whereas "normal" cells did not. HSP70 had higher affinity for A8 than for TLR2; thus, A8 blocked HSP70/TLR2 association and the ability of tumor-derived exosomes to activate MDSCs. Treatment of tumor-bearing C57Bl/6 mice with A8 induced a decrease in the number of MDSCs in the spleen and inhibited tumor progression (n = 6 mice per group). Chemotherapeutic agents such as cisplatin or 5FU increase the amount of HSP70 exosomes, favoring the activation of MDSCs and hampering the development of an antitumor immune response. In contrast, this MDSC activation was not observed if cisplatin or 5FU was combined with A8. As a result, the antitumor effect of the drugs was strongly potentiated. CONCLUSIONS: A8 might be useful for quantifying tumor-derived exosomes and for cancer therapy through MDSC inhibition.


Subject(s)
Aptamers, Peptide/metabolism , Breast Neoplasms/immunology , Colonic Neoplasms/immunology , Exosomes/immunology , HSP70 Heat-Shock Proteins/metabolism , Lung Neoplasms/immunology , Myeloid Cells/immunology , Ovarian Neoplasms/immunology , Toll-Like Receptor 2/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Exosomes/drug effects , Female , Humans , Interferometry/methods , Lung Neoplasms/drug therapy , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Ovarian Neoplasms/drug therapy , Spleen
8.
Epigenetics ; 7(12): 1421-34, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23151460

ABSTRACT

DNA methylation regulates gene expression in a cell-type specific way. Although peripheral blood mononuclear cells (PBMCs) comprise a heterogeneous cell population, most studies of DNA methylation in blood are performed on total mononuclear cells. In this study, we investigated high resolution methylation profiles of 58 CpG sites dispersed over eight immune response genes in multiple purified blood cells from healthy adults and newborns. Adjacent CpG sites showed methylation levels that were increasingly correlated in adult blood vs. cord blood. Thus, while interindividual variability increases from newborn to adult blood, the underlying methylation changes may not be merely stochastic, but seem to be orchestrated as clusters of adjacent CpG sites. Multiple linear regression analysis showed that interindividual methylation variability was influenced by distance of average methylation levels to the closest border (0 or 100%), presence of transcription factor binding sites, CpG conservation across species and age. Furthermore, CD4+ and CD14+ cell types were negative predictors of methylation variability. Concerns that PBMC methylation differences may be confounded by variations in blood cell composition were justified for CpG sites with large methylation differences across cell types, such as in the IFN-γ gene promoter. Taken together, our data suggest that unsorted mononuclear cells are reasonable surrogates of CD8+ and, to a lesser extent, CD4+ T cell methylation in adult peripheral, but not in neonatal, cord blood.


Subject(s)
CpG Islands , DNA Methylation , Fetal Blood/physiology , Leukocytes, Mononuclear/physiology , Adolescent , Adult , CD4-Positive T-Lymphocytes/physiology , Female , Fetal Blood/cytology , Humans , Infant, Newborn , Interferon-gamma/genetics , Lipopolysaccharide Receptors/metabolism , Male , Middle Aged , Promoter Regions, Genetic , Regression Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...