Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222963

ABSTRACT

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

2.
New Phytol ; 230(3): 1156-1168, 2021 05.
Article in English | MEDLINE | ID: mdl-32984980

ABSTRACT

Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway. Therefore, we studied the root colonisation and community composition of arbuscular mycorrhizal (AM) fungi in disturbed vs undisturbed plots along mountain roads. We found that roadside disturbance strongly increases fungal diversity and richness while also promoting AM fungal root colonisation in an otherwise ecto-mycorrhiza and ericoid-mycorrhiza dominated environment. Surprisingly, AM fungi associating with nonnative plant species were present across the whole elevation gradient, even above the highest elevational limit of nonnative plants, indicating that mycorrhizal fungi are not currently limiting the upward movement of nonnative plants. We conclude that roadside disturbance has a positive effect on AM fungal colonisation and richness, possibly supporting the spread of nonnative plants, but that there is no absolute limitation of belowground mutualists, even at high elevation.


Subject(s)
Mycorrhizae , Ecosystem , Fungi , Norway , Plants , Soil , Soil Microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...